...
首页> 外文期刊>Applied Mathematics >Unbiased Diffusion to Escape Complex Geometries: Is Reduction to Effective One-Dimensional Description Adequate to Assess Narrow Escape Times?
【24h】

Unbiased Diffusion to Escape Complex Geometries: Is Reduction to Effective One-Dimensional Description Adequate to Assess Narrow Escape Times?

机译:逃逸复杂几何形状的无偏扩散:有效的一维描述减少是否足以评估狭窄的逃生时间?

获取原文
           

摘要

This study is devoted to unbiased diffusion of point Brownian particles inside a tube of varying cross-section (see Figure 1). An expression for the mean survival time, , of the particles inside the tube is obtained in terms of the bulk diffusion constant, D0 and the system’s geometrical parameters, namely, the tube’s axial semi-length, L, the minor radius, , and the slope of the tube’s wall, . Our expression for correctly retrieves the limit behavior of the system under several conditions. We ran Monte Carlo numerical simulations to compute the mean survival time by averaging the survival time of 5 × 104 trajectories, with time step t = 10-6, D0 = 1, and L = 1. The simulations show good agreement with our model. When the geometrical parameters of this system are varied while keeping constant the tube’s enclosed volume, it resembles the problems of Narrow Escape Time (J. Chem. Phys. 116(22), 9574 (2007)). A previous study on the use of the reduction to effective one-dimension technique (J. Mod. Phys. 2, 284 (2011)) in complex geometries has shown excellent agreement between the theoretical model and numerical simulations. However, in this particular system, the general assumptions of the Hill problem are seemingly inapplicable. The expression obtained shows good agreement with our simulations when 0 ≤ ≤ 1, but fails when grows larger. On the other hand, some errors are found when 0, but the expression holds reasonably well for a broad range of values of . These comparisons between simulations and theoretical predictions, and the expressions obtained for , are the main results of this work.
机译:这项研究致力于使点布朗粒子在具有不同横截面的管内无偏扩散(见图1)。根据体积扩散常数D0和系统的几何参数(即管的轴向半长L,次半径R和管长)获得管内粒子的平均生存时间的表达式。试管壁的坡度。我们的表达式可正确检索系统在几种情况下的极限行为。我们进行了蒙特卡洛数值模拟,通过平均5×104轨迹的生存时间(时间步长t = 10-6,D0 = 1和L = 1)来计算平均生存时间。这些模拟表明与我们的模型具有很好的一致性。当在保持管的封闭体积不变的情况下改变该系统的几何参数时,它类似于狭窄逃逸时间的问题(J. Chem。Phys。116(22),9574(2007))。先前关于在复杂几何图形中使用有效一维约简技术的研究(J. Mod。Phys。2,284(2011))显示,理论模型与数值模拟之间有着极好的一致性。但是,在该特定系统中,希尔问题的一般假设似乎不适用。当0≤≤1时,所获得的表达式与我们的模拟显示出良好的一致性,但是当其增大时会失效。另一方面,找到0时会发现一些错误,但该表达式对于的较大范围的值都适用。这些模拟和理论预测之间的比较,以及针对的表达式,是这项工作的主要结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号