首页> 外文期刊>Applied Sciences >Investigation of Depth and Injection Pressure Effects on Breakdown Pressure and Fracture Permeability of Shale Reservoirs: An Experimental Study
【24h】

Investigation of Depth and Injection Pressure Effects on Breakdown Pressure and Fracture Permeability of Shale Reservoirs: An Experimental Study

机译:深度和注入压力对页岩储层破裂压力和裂缝渗透率影响的实验研究

获取原文
           

摘要

The aim of this study was to identify the influence of reservoir depth on reservoir rock mass breakdown pressure and the influence of reservoir depth and injecting fluid pressure on the flow ability of reservoirs before and after the hydraulic fracturing process. A series of fracturing tests was conducted under a range of confining pressures (1, 3, 5 and 7 MPa) to simulate various depths. In addition, permeability tests were conducted on intact and fractured samples under 1 and 7 MPa confining pressures to determine the flow characteristic variations upon fracturing of the reservoir, depending on the reservoir depth and injecting fluid pressure. N 2 permeability was tested under a series of confining pressures (5, 10, 15, 20 and 25 MPa) and injection pressures (1–10 MPa). According to the results, shale reservoir flow ability for gas movement may reduce with increasing injection pressure and reservoir depth, due to the Klinkenberg phenomenon and pore structure shrinkage, respectively. The breakdown pressure of the reservoir rock linearly increases with increasing reservoir depth (confining pressure). Interestingly, 81% permeability reduction was observed in the fractured rock mass due to high (25 MPa) confinement, which shows the importance of proppants in the fracturing process.
机译:本研究的目的是确定水力压裂前后储层深度对储层岩体破裂压力的影响以及储层深度和注入流体压力对储层流动能力的影响。在一定范围的围压(1、3、5和7 MPa)下进行了一系列压裂测试,以模拟各种深度。另外,在完整的和破裂的样品上在1和7 MPa的限制压力下进行了渗透性测试,以确定取决于储层深度和注入流体压力的储层压裂后的流动特性变化。在一系列围压(5、10、15、20和25 MPa)和注入压力(1-10 MPa)下测试了N 2的渗透性。根据结果​​,分别由于克林根贝格现象和孔隙结构收缩,页岩储层的天然气运移能力可能会随着注入压力和储层深度的增加而降低。储层岩石的击穿压力随储层深度的增加(围压)线性增加。有趣的是,由于高(25 MPa)限制,在裂隙岩体中观察到渗透率降低了81%,这表明支撑剂在压裂过程中的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号