...
首页> 外文期刊>APL Materials >Giant room-temperature electrostrictive coefficients in lead-free relaxor ferroelectric ceramics by compositional tuning
【24h】

Giant room-temperature electrostrictive coefficients in lead-free relaxor ferroelectric ceramics by compositional tuning

机译:无铅弛豫铁电陶瓷中通过成分调谐的超大室温电致伸缩系数

获取原文
           

摘要

A thermotropic phase boundary between non-ergodic and ergodic relaxor phases is tuned in lead-free Bi1/2Na1/2TiO3-based ceramics through a structural transition driven by compositional modification (usually named as “morphotropic approach”). The substitution of Bi(Ni1/2Ti1/2)O3 for Bi1/2(Na0.78K0.22)1/2TiO3 induces a transition from tetragonal to “metrically” cubic phase and thereby, the ergodic relaxor ferroelectric phase becomes predominant at room temperature. A shift of the transition temperature (denoted as TF-R) in the non-ergodic-to-ergodic phase transition is corroborated via temperature-dependent dielectric permittivity and loss measurements. By monitoring the chemical composition dependence of polarization-electric field and strain-electric field hysteresis loops, it is possible to track the critical concentration of Bi(Ni1/2Ti1/2)O3 where the (1 ? x)Bi0.5(Na0.78K0.22)0.5TiO3-xBi(Ni0.5Ti0.5)O3 ceramic undergoes the phase transition around room temperature. At the Bi(Ni0.5Ti0.5)O3 content of x = 0.050, the highest room-temperature electrostrictive coefficient of 0.030 m4/C2 is achieved with no hysteretic characteristic, which can foster the realization of actual electrostrictive devices with high operational efficiency at room temperature.
机译:在无铅Bi 1/2 Na 1/2 TiO 3 -中调整非遍历和遍历弛豫相之间的热致相界基陶瓷通过通过成分改性(通常称为“变质法”)驱动的结构转变来实现。 Bi(Ni 1/2 Ti 1/2 )O 3 取代Bi 1/2 ( Na 0.78 K 0.22 1/2 TiO 3 诱导从四方相转变为“公制”立方相,因此,遍历弛豫铁电相在室温下占主导地位。通过与温度相关的介电常数和损耗测量,证实了非从遍历到遍历相变中的跃迁温度的变化(表示为T F-R )。通过监测极化电场和应变电场磁滞回线的化学成分依赖性,可以跟踪Bi(Ni 1/2 Ti 1/2 )O 3 其中(1?x)Bi 0.5 (Na 0.78 K 0.22 0.5 TiO 3 -xBi(Ni 0.5 Ti 0.5 )O 3 陶瓷经历相变在室温附近转变。 Bi(Ni 0.5 Ti 0.5 )O 3 的含量x = 0.050时,最高室温电致伸缩系数为0.030 m 4 / C 2 没有滞后特性,可以促进在室温下实现具有高工作效率的实际电致伸缩器件的实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号