...
首页> 外文期刊>AMB Express >Exploring d-xylose oxidation in Saccharomyces cerevisiae through the Weimberg pathway
【24h】

Exploring d-xylose oxidation in Saccharomyces cerevisiae through the Weimberg pathway

机译:通过Weimberg途径探索 Saccharomyces cerevisiae 中的 d -木糖氧化

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Engineering of the yeast Saccharomyces cerevisiae towards efficient d -xylose assimilation has been a major focus over the last decades since d -xylose is the second most abundant sugar in nature, and its conversion into products could significantly improve process economy in biomass-based processes. Up to now, two different metabolic routes have been introduced via genetic engineering, consisting of either the isomerization or the oxido-reduction of d -xylose to d -xylulose that is further connected to the pentose phosphate pathway and glycolysis. In the present study, cytosolic d -xylose oxidation was investigated instead, through the introduction of the Weimberg pathway from Caulobacter crescentus in S. cerevisiae . This pathway consists of five reaction steps that connect d -xylose to the TCA cycle intermediate α-ketoglutarate. The corresponding genes could be expressed in S. cerevisiae , but no growth was observed on d -xylose indicating that not all the enzymes were functionally active. The accumulation of the Weimberg intermediate d -xylonate suggested that the dehydration step(s) might be limiting, blocking further conversion into α-ketoglutarate. Although four alternative dehydratases both of bacterial and archaeon origins were evaluated, d -xylonate accumulation still occurred. A better understanding of the mechanisms associated with the activity of dehydratases, both at a bacterial and yeast level, appears essential to obtain a fully functional Weimberg pathway in S. cerevisiae . Electronic supplementary material The online version of this article (10.1186/s13568-018-0564-9) contains supplementary material, which is available to authorized users.
机译:由于d-木糖是自然界中第二丰富的糖,因此,将酿酒酵母进行有效的d-木糖同化工程一直是人们关注的重点,并且其转化为产物可以显着改善基于生物质的过程的过程经济性。迄今为止,已经通过基因工程引入了两种不同的代谢途径,包括将d-木糖异构化或氧化还原为d-木酮糖,其进一步与戊糖磷酸途径和糖酵解连接。在本研究中,通过在酿酒酵母中引入新月形杆菌中的Weimberg途径研究了胞质d-木糖氧化。该途径由五个反应步骤组成,这些步骤将d-木糖连接到TCA循环中间体α-酮戊二酸。相应的基因可以在酿酒酵母中表达,但是在d-木糖上没有观察到生长,表明不是所有的酶都具有功能活性。 Weimberg中间体d-xylonate的积累表明脱水步骤可能很有限,阻止了进一步转化为α-酮戊二酸酯的过程。尽管评估了细菌和古细菌来源的四种替代性脱水酶,但仍存在d-木糖酸盐的积累。更好地了解与脱水酶在细菌和酵母水平上的活性相关的机制,对于在酿酒酵母中获得功能齐全的Weimberg途径至关重要。电子补充材料本文的在线版本(10.1186 / s13568-018-0564-9)包含补充材料,授权用户可以使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号