...
首页> 外文期刊>Annual Research & Review in Biology >An Inexpensive Microfluidic PDMS Chip for Visual Detection of Biofilm-forming Bacteria
【24h】

An Inexpensive Microfluidic PDMS Chip for Visual Detection of Biofilm-forming Bacteria

机译:用于生物膜形成细菌的视觉检测的廉价微流PDMS芯片

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Aims: Design and assembly of an inexpensive microfluidic PDMS chip for visual detection of cell adhesion and biofilm formation. Study Design: Three different styles of microchannels (2.6, 5.0, and 11.5 μl volumes) were designed, fabricated and tested for adhesion and biofilm formation in a microfluidic system. The pressure drop measurements system includes a bio-Ferrograph connected to the PDMS microchannel via a syringe and a pressure transducer. Methodology: Microfluidic chips were fabricated using Polydimethylsiloxane (PDMS) by means of soft lithography. Different cell densities of E.coli K12 cells were introduced to investigate adhesion and biofilm formation at different time intervals. Stabilization time and hydraulic resistance were obtained via a Bio-Ferrograph connected to a pressure transducer. Results: PDMS microfluidic volume (2.6 μl) failed to generate noticeable biofilm, while slight and greatest yield occurred with PDMS microchannels (5.0, and 11.5 μl), respectively, and could detect as low as 26 cells in 11.5 μl microchannel. As incubation time and/or initial cell density increases, cell adhesion increased, illustrated by crystal violet color intensity. High stabilization time (3 h) didn’t allow for bacterial attachment and cultivation inside the microchannel (2.6 μl) while lower stabilization time (10 min) yielded the highest capacity of cell adhesion in microchannel (11.5 μl). Conclusions: We developed a microfluidic chip with low stabilization time and hydraulic resistance, thus offering more volume for adhesion of bacterial cells and biofilm formation. It allowed bacterial cultivation without any addition of nutrients. The microfluidic chip provides a platform to monitor biofilm growth and can be integrated in situ investigations for biological systems, food biotechnology and other industrial biotechnology applications. This would allow a non-destructive and non-invasive monitoring of the biofilm-forming bacteria inside the PDMS microfluidic chip. This work opens opportunities for further investigations of pressure drop phenomena in microchannels that would otherwise go unnoticed in macro scale measurements.
机译:目的:设计和组装廉价的微流PDMS芯片,用于视觉检测细胞粘附和生物膜形成。研究设计:设计,制造和测试了三种不同样式的微通道(2.6、5.0和11.5μl体积),用于在微流体系统中进行粘附和生物膜形成。压降测量系统包括通过注射器和压力传感器连接到PDMS微通道的生物Ferrograph。方法:采用聚二甲基硅氧烷(PDMS)通过软光刻技术制造微流控芯片。引入大肠杆菌K12细胞的不同细胞密度以研究在不同时间间隔的粘附和生物膜形成。稳定时间和液压阻力是通过连接压力传感器的Bio-Ferrograph获得的。结果:PDMS微流体体积(2.6μl)未能产生明显的生物膜,而PDMS微通道(5.0和11.5μl)分别产生了微小和最大的产量,在11.5μl微通道中可检测到低至26个细胞。随着孵育时间和/或初始细胞密度的增加,细胞粘附性增加,如结晶紫颜色强度所示。较高的稳定时间(3小时)不允许细菌在微通道内附着和培养(2.6μl),而较低的稳定时间(10分钟)则可在微通道内产生最高的细胞粘附能力(11.5μl)。结论:我们开发了一种微流控芯片,其稳定时间短且耐水压性强,从而为细菌细胞的粘附和生物膜的形成提供了更大的空间。它允许细菌培养而无需添加任何营养。微流控芯片提供了一个监测生物膜生长的平台,并且可以集成到生物系统,食品生物技术和其他工业生物技术应用的原位研究中。这将允许对PDMS微流控芯片内部的生物膜形成细菌进行非破坏性和非侵入性监测。这项工作为进一步研究微通道中的压降现象提供了机会,否则在宏观测量中就不会引起注意。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号