首页> 外文期刊>Analytical methods >A microfluidic lab-on-chip derivatisation technique for the measurement of gas phase formaldehyde
【24h】

A microfluidic lab-on-chip derivatisation technique for the measurement of gas phase formaldehyde

机译:微流体芯片实验室衍生化技术,用于测量气相甲醛

获取原文
           

摘要

A microfluidic lab-on-chip derivatisation technique has been optimized to achieve a rapid, automated and sensitive determination of ambient gaseous formaldehyde when used in combination with GC-MS. The method used a Pyrex micro-reactor comprising three inlets and one outlet, gas and fluid splitting and combining channels, mixing junctions, and a 2.0 m long, 620 μm internal diameter reaction micro-channel. The micro-reactor integrated three functions, that of: (1) mixer and reactor, (2) heater, and (3) preconcentrator. The flow rates of the gas sample and derivatisation solution and the temperature of the micro-reactor were optimized to achieve a near real-time measurement with a rapid and high efficiency derivatisation step following gas sampling. The enhanced phase contact area-to-volume ratio and the high heat transfer rate in the micro-reactor resulted in a fast and high efficiency derivatisation reaction. Calibration showed good linearity in the range of 26 to 331 ppb with correlation coefficients R2 = 0.988 and 0.997 for PFPH and PFBHA derivatives. For low gas phase formaldehyde mixing ratios (26 ppb) the derivatisation solution could be repeatedly recycled through the chip enabling pre-concentration of the derivative – hydrazone. The calibration curves for this recycling approach also showed good linearity from 4.0 to 26 ppb with method detection limits (MDLs) of 2.1 ppb and 1.1 ppb for PFPH and PFBHA derivatives. The feasibility of the technique was assessed using measurements of laboratory ambient air, with formaldehyde the predominant carbonyl compound at a 12.5 ppb level. The proof of principle experiments demonstrated the potential of the approach for on-line measurements of other carbonyls including acetaldehyde, acetone and propionaldehyde...
机译:微流控芯片实验室衍生化技术已经过优化,当与GC-MS结合使用时,可以快速,自动和灵敏地测定周围的气态甲醛。该方法使用了一个Pyrex微反应器,该反应器包括三个入口和一个出口,气体和流体分流和合并通道,混合接口以及一个2.0 m长,620μm内径的反应微通道。微反应器集成了三个功能:(1)混合器和反应器,(2)加热器和(3)预浓缩器。优化了气体样品和衍生化溶液的流速以及微反应器的温度,以在气体采样后通过快速高效的衍生化步骤实现近实时测量。微型反应器中相接触面积/体积比的提高和高传热速率导致了快速高效的衍生化反应。校准显示出良好的线性,范围为26至331 ppb,PFPH和PFBHA衍生物的相关系数R2 = 0.988和0.997。对于低气相甲醛混合比(<26 ppb),衍生化溶液可以通过芯片重复循环使用,从而可以预先浓缩derivative。此回收方法的校准曲线还显示出4.0 ppb至26 ppb的良好线性,其中PFPH和PFBHA衍生物的方法检出限(MDL)为2.1 ppb和1.1 ppb。该技术的可行性是通过测量实验室环境空气来评估的,甲醛为主要的羰基化合物,浓度为12.5 ppb。原理验证实验证明了该方法在在线测量其他羰基化合物(包括乙醛,丙酮和丙醛)方面的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号