...
首页> 外文期刊>AIP Advances >Numerical simulation of convection and heat transfer in Czochralski crystal growth by multiple-relaxation-time LBM
【24h】

Numerical simulation of convection and heat transfer in Czochralski crystal growth by multiple-relaxation-time LBM

机译:多松弛时间LBM对直拉晶体生长过程中对流和传热的数值模拟

获取原文
           

摘要

A two-dimensional axisymmetric swirling model based on the lattice Boltzmann method (LBM) in a pseudo Cartesian coordinate system is posited to simulate Czochralski (Cz) crystal growth in this paper. Specifically, the multiple-relaxation-time LBM (MRT-LBM) combined with the finite difference method (FDM) is used to analyze the melt convection and heat transfer in the process of Cz crystal growth. An incompressible axisymmetric swirling MRT-LB D2Q9 model is applied to solve for the axial and radial velocities by inserting thermal buoyancy and rotational inertial force into the two-dimensional lattice Boltzmann equation. In addition, the melt temperature and the azimuthal velocity are solved by MRT-LB D2Q5 models, and the crystal temperature is solved by FDM. The comparison results of stream functions values of different methods demonstrate that our hybrid model can be used to simulate the fluid-thermal coupling in the axisymmetric swirling model correctly and effectively. Furthermore, numerical simulations of melt convection and heat transfer are conducted under the conditions of high Grashof (Gr) numbers, within the range of 105 ~ 107, and different high Reynolds (Re) numbers. The experimental results show our hybrid model can obtain the exact solution of complex crystal-growth models and analyze the fluid-thermal coupling effectively under the combined action of natural convection and forced convection.
机译:提出了一种基于格子玻尔兹曼方法(LBM)的二维轴对称旋涡模型,该模型在拟直角坐标系下进行了模拟,模拟了切克劳斯基(Cz)晶体的生长。具体而言,将多重弛豫时间LBM(MRT-LBM)与有限差分法(FDM)相结合,用于分析Cz晶体生长过程中的熔体对流和传热。通过将热浮力和旋转惯性力插入二维晶格Boltzmann方程中,采用不可压缩的轴对称旋流MRT-LB D2Q9模型求解轴向和径向速度。另外,熔体温度和方位角速度通过MRT-LB D2Q5模型求解,晶体温度通过FDM解决。不同方法的流函数值的比较结果表明,我们的混合模型可以正确有效地模拟轴对称旋流模型中的流体-热耦合。此外,在高格拉斯霍夫(Gr)数,10 5 〜10 7 的范围内,且不同雷诺数(Re)。实验结果表明,在自然对流和强迫对流的共同作用下,我们的混合模型能够获得复杂晶体生长模型的精确解,并能有效地分析流体-热耦合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号