首页> 外文期刊>AIP Advances >Weak electric-field detection with sub-1 Hz resolution at radio frequencies using a Rydberg atom-based mixer
【24h】

Weak electric-field detection with sub-1 Hz resolution at radio frequencies using a Rydberg atom-based mixer

机译:使用基于Rydberg原子的混频器在射频下以低于1 Hz的分辨率检测弱电场

获取原文
           

摘要

Rydberg atoms have been used for measuring radio-frequency (RF) electric (E)-fields due to their strong dipole moments over the frequency range of 500 MHz-1 THz. For this, electromagnetically induced transparency (EIT) within the Autler-Townes (AT) regime is used such that the detected E-field is proportional to AT splitting. However, for weak E-fields AT peak separation becomes unresolvable thus limiting the minimum detectable E-field. Here, we demonstrate using the Rydberg atoms as an RF mixer for weak E-field detection well below the AT regime with frequency discrimination better than 1 Hz resolution. A heterodyne detection scenario with two E-fields incident on a vapor cell filled with cesium atoms is used. One E-field at 19.626000 GHz drives the 34 D sub5/2/sub → 35 P sub3/2/sub Rydberg transition and acts as a local oscillator (LO) and a second signal E-field (Sig) of interest is at 19.626090 GHz. In the presence of the LO, the Rydberg atoms naturally down convert the Sig field to a 90 kHz intermediate frequency (IF) signal. This IF signal manifests as an oscillation in the probe laser intensity through the Rydberg vapor and is easily detected with a photodiode and lock-in amplifier. In the configuration used here, E-field strength down to ≈ 46 μ V/m ± 2 μ V/m were detected with a sensitivity of ≈ 79 μ Vmsup?1/supHzsup?1/2/sup. Furthermore, neighboring fields 0.1 Hz away and equal in strength to Sig could be discriminated without any leakage into the lock-in signal. For signals 1 Hz away and as high as +60 dB above Sig, leakage into the lock-in signal could be kept below -3 dB.
机译:由于里德堡原子在500 MHz-1 THz的频率范围内具有很强的偶极矩,因此它们已用于测量射频(RF)电场。为此,在Autler-Townes(AT)方案内使用电磁感应的透明度(EIT),以便检测到的电场与AT分裂成比例。但是,对于弱电场,AT峰分离变得无法解决,因此限制了最小可检测电场。在这里,我们演示了使用里德堡原子作为射频混频器,远低于AT制式的弱电场检测,其频率分辨力优于1 Hz分辨率。使用外差检测方案,其中两个电场入射在充满铯原子的蒸汽电池上。在19.626000 GHz处的一个电场驱动34 D 5/2 →35 P 3/2 里德伯格跃迁,并充当本地振荡器(LO)和第二个信号E感兴趣的场(Sig)为19.626090 GHz。在存在LO的情况下,Rydberg原子自然会将Sig场降频转换为90 kHz中频(IF)信号。该IF信号表现为通过Rydberg蒸气引起的探针激光强度的振荡,很容易用光电二极管和锁定放大器检测到。在此处使用的配置中,检测到的电场强度低至≈46μV / m±2μV / m,灵敏度为≈79μVm ?1 Hz ?1 / 2 。此外,可以区分相距0.1 Hz且强度等于Sig的相邻场,而不会泄漏到锁定信号中。对于1 Hz以外且比Sig高+60 dB的信号,锁定信号的泄漏应保持在-3 dB以下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号