...
首页> 外文期刊>AIP Advances >Numerical treatment for fluidic system of activation energy with non-linear mixed convective and radiative flow of magneto nanomaterials with Navier’s velocity slip
【24h】

Numerical treatment for fluidic system of activation energy with non-linear mixed convective and radiative flow of magneto nanomaterials with Navier’s velocity slip

机译:具有Navier速度滑移的磁性纳米材料的非线性混合对流和辐射流对活化能流体系统的数值处理

获取原文
   

获取外文期刊封面封底 >>

       

摘要

A novel application of Lobatto IIIA computing solver is presented for the solution of nanofluidic Buongiorno model in the porous space. Incompressible electrically conducting fluid mixed with nanomaterial is considered. Flow expression is modelled via nonlinear mixed convection and Navier’s slip condition. Activation energy, Joule heating and non-liner thermal radiation characterise the heat/mass transport. The governing PDEs of the considered problem are transformed into an equivalent system of ODEs using similarity variables. The resulting system is solved numerically by exploiting the strength of Lobatto IIIA computing solver. Numerical and graphical illustrations are utilized to interpret the behaviour of sundry physical parameters on velocity, concentration and temperature profiles. Skin friction, temperature and concentration gradients for different scenarios of embedding variables are tabulated and analysed. Furthermore, numerical data for mesh points, error analysis, ODEs and boundary conditions evaluation are also displayed. Our computed analysis indicates that velocity of nanofluid increases for large value of slip parameter while it decreases with the increase of porosity parameter. In addition, concentration distribution is decaying and increasing functions of chemical reaction and activation energy parameters respectively.
机译:提出了Lobatto IIIA计算求解器在多孔空间中的纳米流体Buongiorno模型求解中的新应用。考虑了与纳米材料混合的不可压缩的导电流体。流量表达式是通过非线性混合对流和Navier滑移条件建模的。活化能,焦耳加热和非线性热辐射是热/质量传递的特征。使用相似性变量,将考虑问题的支配PDE转换为ODE的等效系统。通过利用Lobatto IIIA计算求解器的优势来对所得系统进行数值求解。利用数字和图形说明来解释各种物理参数在速度,浓度和温度曲线上的行为。将嵌入变量的不同场景的皮肤摩擦,温度和浓度梯度制成表格并进行分析。此外,还显示了网格点,误差分析,ODE和边界条件评估的数值数据。我们的计算分析表明,纳米流体的速度随着滑移参数的增大而增大,而随孔隙率参数的增大而减小。此外,浓度分布分别是化学反应和活化能参数的衰减和增加函数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号