...
首页> 外文期刊>Current zoology >Effects of sample size on various genetic diversity measures in population genetic study with microsatellite DNA markers
【24h】

Effects of sample size on various genetic diversity measures in population genetic study with microsatellite DNA markers

机译:样本量对微卫星DNA标记人群遗传研究中各种遗传多样性措施的影响

获取原文
           

摘要

Sample collection and sampling strategy is of primary importance in population genetic studies, and can greatly influence the analysis and interpretation of the data obtained. Microsatellite DNA sequences are the most revealing DNA markers available so far for inferring population structure and dynamics, and have been widely employed in genetic studies of populations. Nevertheless, few studies have specifically examined the effects of sample size and other sampling factors on various genetic diversity measures in population genetic work using these markers. When such issues were discussed in the literature, it was often very brief or not based on experimental data. Here, we examined these issues more closely using empirical genotype data from an analysis of 26 populations of the migratory locusts Locusta migratoria (1 381 individuals) at 8 microsatellite loci. The following genetic diversity measures were studied: number of alleles per locus (NA), mean number of allele over loci (MNA), observed heterozygosity (Ho) and expected heterozygosity (He). We also tried to infer the theoretic minimum sample size needed for population genetic studies with microsatellite loci. Our main results and conclusions are as follows. ( 1 ) NA and MNA, i.e. the estimated allelic richness of populations, are significantly affected by sample size (see Figs 1 - 4, Table 2), while no significant correlation between sample size and heterozygosities (He and Ho) was observed (Figs 6 - 7). ( 2 ) Both the rarefaction method and random resampling method can remove effects of sample size on the allelic richness measures (NA and MNA) discussed above (Fig. 5, Figs 8 - 9). Therefore, although the uncorrected NA and MNA are sensitive to sample size variation and should not be reliable parameters for assessing demographic processes such as bottleneck events, these measures after correction can be used to infer historical population size reduction. Measures of heterogygosity (Ho and He) appears to be fairly stable and suitable for studying genic variation of populations. ( 3 ) The extent to which NA and MNA were affected by sample size varies among microsatellite loci. Sample size variation has much greater impact on highly polymorphic loci ( e.g. LmIOZc19 locus of the migratory locust) than on less polymorphic loci ( e.g. LmIOZc76 locus; see Figs 1 and 3). ( 4 ) The minimum sample size needed in a study depends much on the objective of the research project, and is determined by the population frequency of the least represented allele (s). In order to detect an allele of the frequency 0.01 in population with 95% probability, 149 or more samples are required (Table 3). Given that most microsatellite DNA loci have 20 to 30 alleles, at least 30-50 individuals should be analyzed in most cases to detect all these alleles. This theoretical value, calculated from the formula P0 = (1 - q ) 2 n (where n is the sample size, q is the frequency of the allele in question, P0 is the probability of the allele being not represented in the sample), agrees well with simulation results (see Fig.3). ( 5 ) Finally, we strongly advise that homogeneity tests should be carried out between samples collected at different times from the same location or between sexes before pooling such samples, to check potential heterogeneity due to temporal variation in population structure or sex-bias dispersal. Although with the migratory locusts we studied, no significant difference exists among such samples, this may not be the case for other study systems [ Acta Zoologica Sinica 50 (2): 279 - 290 , 2004].
机译:样本采集和采样策略在群体遗传学研究中至关重要,并且可以极大地影响所获得数据的分析和解释。迄今为止,微卫星DNA序列是可用于推断种群结构和动态的最具揭示性的DNA标记,已被广泛用于种群的遗传研究中。然而,很少有研究专门研究使用这些标记物的样本大小和其他采样因子对种群遗传工作中各种遗传多样性测度的影响。当在文献中讨论此类问题时,它通常非常简短,或者不是基于实验数据。在这里,我们使用经验基因型数据更仔细地研究了这些问题,这些数据来自对8个微卫星基因座上的蝗虫迁移种群(1 381个个体)的26个种群的分析。研究了以下遗传多样性指标:每个基因座的等位基因数量(NA),基因座上的等位基因平均数量(MNA),观察到的杂合度(Ho)和预期的杂合度(He)。我们还试图推断使用微卫星基因座进行群体遗传研究所需的理论最小样本量。我们的主要结果和结论如下。 (1)NA和MNA,即估计的人群等位基因丰富度,受到样本量的显着影响(见图1-4,表2),而样本量与杂合度(He和Ho)之间没有显着相关性(图1和图2)。 6-7)。 (2)稀疏法和随机重采样法都可以消除样本量对上述等位基因丰度测度(NA和MNA)的影响(图5,图8-9)。因此,尽管未校正的NA和MNA对样本量变化敏感,并且不应作为评估人口统计过程(如瓶颈事件)的可靠参数,但校正后的这些措施可用于推断历史人口规模的减少。杂合度的度量(Ho和He)似乎相当稳定,适合研究种群的遗传变异。 (3)样本大小对NA和MNA的影响程度随微卫星基因座的不同而不同。样本大小变化对高度多态性位点(例如,the游蝗的LmIOZc19基因座)的影响要大得多,而对较少多态性位点(例如LmIOZc76基因座;见图1和3)的影响更大。 (4)研究所需的最小样本量在很大程度上取决于研究项目的目标,并由代表最少的等位基因的种群频率决定。为了以95%的概率检测人群中频率为0.01的等位基因,需要149个或更多样本(表3)。鉴于大多数微卫星DNA基因座具有20至30个等位基因,在大多数情况下,至少应分析30-50个个体以检测所有这些等位基因。根据公式P 0 =(1 - q) 2 n 计算的理论值(其中n是样本大小,q是相关等位基因的频率, P 0 是等位基因在样品中未表达的概率),与模拟结果吻合很好(见图3)。 (5)最后,我们强烈建议应在同一时间,同一地点或不同性别之间采集的样本之间进行均一性测试,以收集由于样本人口结构的时间变化或性别偏见而导致的潜在异质性。尽管使用我们研究的蝗虫,这些样本之间没有显着差异,但其他研究系统可能并非如此[动物学报50(2):279-290,2004]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号