首页> 外文期刊>Advances in Statistical Climatology, Meteorology and Oceanography >Future climate emulations using quantile regressions on large ensembles
【24h】

Future climate emulations using quantile regressions on large ensembles

机译:使用大型合奏的分位数回归进行未来气候模拟

获取原文
           

摘要

The study of climate change and its impacts depends on generating projections of future temperature and other climate variables. For detailed studies, these projections usually require some combination of numerical simulation and observations, given that simulations of even the current climate do not perfectly reproduce local conditions. We present a methodology for generating future climate projections that takes advantage of the emergence of climate model ensembles, whose large amounts of data allow for detailed modeling of the probability distribution of temperature or other climate variables. The procedure gives us estimated changes in model distributions that are then applied to observations to yield projections that preserve the spatiotemporal dependence in the observations. We use quantile regression to estimate a discrete set of quantiles of daily temperature as a function of seasonality and long-term change, with smooth spline functions of season, long-term trends, and their interactions used as basis functions for the quantile regression. A particular innovation is that more extreme quantiles are modeled as exceedances above less extreme quantiles in a nested fashion, so that the complexity of the model for exceedances decreases the further out into the tail of the distribution one goes. We apply this method to two large ensembles of model runs using the same forcing scenario, both based on versions of the Community Earth System Model (CESM), run at different resolutions. The approach generates observation-based future simulations with no processing or modeling of the observed climate needed other than a simple linear rescaling. The resulting quantile maps illuminate substantial differences between the climate model ensembles, including differences in warming in the Pacific Northwest that are particularly large in the lower quantiles during winter. We show how the availability of two ensembles allows the efficacy of the method to be tested with a “perfect model” approach, in which we estimate transformations using the lower-resolution ensemble and then apply the estimated transformations to single runs from the high-resolution ensemble. Finally, we describe and implement a simple method for adjusting a transformation estimated from a large ensemble of one climate model using only a single run of a second, but hopefully more realistic, climate model.
机译:对气候变化及其影响的研究取决于对未来温度和其他气候变量的预测。对于详细研究,这些预测通常需要数值模拟和观测值的某种组合,因为即使对当前气候的模拟也不能完美地再现当地条件。我们提出了一种利用气候模型集合的出现来生成未来气候预测的方法,该方法的大量数据可以对温度或其他气候变量的概率分布进行详细的建模。该过程为我们提供了模型分布的估计变化,然后将其应用于观测,以产生保留观测中时空依赖性的预测。我们使用分位数回归来估计作为季节和长期变化的函数的离散的日温度分位数集,其中季节,长期趋势的平滑样条函数及其相互作用用作分位数回归的基础函数。一种特殊的创新是,将更多的极端分位数以嵌套的方式建模为超出较小的极端分位数的超出,因此,超出范围的模型的复杂性将进一步降低,直至分布的尾部。我们将此方法应用于使用相同强制方案的两个大型模型运行,这两个模型均基于以不同分辨率运行的社区地球系统模型(CESM)的版本。该方法生成基于观测的未来模拟,除了简单的线性重新换算外,无需对观测的气候进行处理或建模。生成的分位数图说明了气候模型集合之间的实质性差异,包括西北太平洋地区的变暖差异,冬季较低分位数的差异特别大。我们展示了两个合奏的可用性如何使用“完美模型”方法测试该方法的有效性,其中我们使用较低分辨率的集合估计转换,然后将估计的转换应用于高分辨率的单次运行合奏。最后,我们描述并实现了一种简单的方法,该方法仅使用一秒钟的第二次运行,但希望更现实的气候模型来调整从一个气候模型的大型合奏估计的转换。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号