首页> 外文期刊>ACS Omega >Magnetic, Pseudocapacitive, and H2O2-Electrosensing Properties of Self-Assembled Superparamagnetic Co0.3Zn0.7Fe2O4 with Enhanced Saturation Magnetization
【24h】

Magnetic, Pseudocapacitive, and H2O2-Electrosensing Properties of Self-Assembled Superparamagnetic Co0.3Zn0.7Fe2O4 with Enhanced Saturation Magnetization

机译:具有增强的饱和磁化强度的自组装超顺磁性Co0.3Zn0.7Fe2O4的磁,伪电容和H2O2致静电性能

获取原文
       

摘要

The present work explores the structural, microstructural, optical, magnetic, and hyperfine properties of Co0.3Zn0.7Fe2O4 microspheres, which have been synthesized by a novel template-free solvothermal method. Powder X-ray diffraction, electron microscopic, and Fourier transform infrared spectroscopic techniques were employed to thoroughly investigate the structural and microstructural properties of Co0.3Zn0.7Fe2O4 microspheres. The results revealed that the microspheres (average diameter ~121 nm) have been formed by self-assembly of nanoparticles with an average particle size of ~12 nm. UV–vis diffuse reflectance spectroscopic and photoluminescence studies have been performed to study the optical properties of the sample. The studies indicate that Co0.3Zn0.7Fe2O4 microspheres exhibit a lower band gap value and enhanced PL intensity compared to their nanoparticle counterpart. The outcomes of dc magnetic measurement and M?ssbauer spectroscopic study confirm that the sample is ferrimagnetic in nature. The values of saturation magnetization are 76 and 116 emu g–1 at 300 and 5 K, respectively, which are substantially larger than its nanosized counterpart. The infield M?ssbauer spectroscopic study and Rietveld analysis of the PXRD pattern reveal that Fe3+ ions have migrated from [B] to (A) sites resulting in the cation distribution: (Zn2+0.46Fe3+0.54)A[Zn2+0.24Co2+0.3Fe3+1.46]BO4. Comparison of electrochemical performance of the Co0.3Zn0.7Fe2O4 microspheres to that of the Co0.3Zn0.7Fe2O4 nanoparticles reveals that the former displays greater specific capacitance (149.13 F g–1) than the latter (80.06 F g–1) due to its self-assembled porous structure. Moreover, it was found that Co0.3Zn0.7Fe2O4 microspheres possess a better electrochemical response toward H2O2 sensing than Co0.3Zn0.7Fe2O4 nanoparticles in a wide linear range.
机译:本工作探讨了通过新型无模板溶剂热法合成的Co0.3Zn0.7Fe2O4微球的结构,微观结构,光学,磁性和超精细性能。粉末X射线衍射,电子显微镜和傅里叶变换红外光谱技术被用来彻底研究Co0.3Zn0.7Fe2O4微球的结构和微观结构特性。结果表明,微球(平均直径〜121 nm)是由纳米颗粒的自组装形成的,平均粒径为〜12 nm。进行了紫外可见漫反射光谱和光致发光研究,以研究样品的光学性质。研究表明,Co0.3Zn0.7Fe2O4微球与纳米粒子相比,具有较低的带隙值和增强的PL强度。直流磁测量和Msssbauer光谱研究的结果证实该样品本质上是亚铁磁性的。在300 K和5 K时,饱和磁化强度分别为76和116 emu g-1,远大于其纳米尺寸。现场M?ssbauer光谱研究和PXRD图的Rietveld分析表明,Fe3 +离子已从[B]迁移到(A)位,导致阳离子分布:(Zn2 + 0.46Fe3 + 0.54)A [Zn2 + 0.24Co2 + 0.3Fe3 + 1.46] BO4。 Co0.3Zn0.7Fe2O4微球的电化学性能与Co0.3Zn0.7Fe2O4纳米颗粒的电化学性能比较表明,前者比后者(80.06 F g-1)显示出更高的比电容(149.13 F g-1)。自组装的多孔结构。而且,发现在宽的线性范围内,Co0.3Zn0.7Fe2O4微球比Co0.3Zn0.7Fe2O4纳米颗粒具有更好的对H2O2的电化学响应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号