...
首页> 外文期刊>ACS Omega >Catalysis of Cu Cluster for NO Reduction by CO: Theoretical Insight into the Reaction Mechanism
【24h】

Catalysis of Cu Cluster for NO Reduction by CO: Theoretical Insight into the Reaction Mechanism

机译:铜团簇催化CO还原NO的反应机理的理论研究

获取原文

摘要

Density functional theory calculations here elucidated that Cu38-catalyzed NO reduction by CO occurred not through NO dissociative adsorption but through NO dimerization. NO is adsorbed to two Cu atoms in a bridging manner. NO adsorption energy is much larger than that of CO. N–O bond cleavage of the adsorbed NO molecule needs a very large activation energy (ΔG°?). On the other hand, dimerization of two NO molecules occurs on the Cu38 surface with small ΔG°? and very negative Gibbs reaction energy (ΔG°) to form ONNO species adsorbed to Cu38. Then, a CO molecule is adsorbed at the neighboring position to the ONNO species and reacts with the ONNO to induce N–O bond cleavage with small ΔG°? and very negative ΔG°, leading to the formation of N2O adsorbed on Cu38 and CO2 molecule in the gas phase. N2O dissociates from Cu38, and then it is readsorbed to Cu38 in the most stable adsorption structure. N–O bond cleavage of N2O easily occurs with small ΔG°? and significantly negative ΔG° to form the N2 molecule and the O atom adsorbed on Cu38. The O atom reacts with the CO molecule to afford CO2 and regenerate Cu38, which is rate-determining. N2O species was experimentally observed in Cu/γ-Al2O3-catalyzed NO reduction by CO, which is consistent with this reaction mechanism. This mechanism differs from that proposed for the Rh catalyst, which occurs via N–O bond cleavage of the NO molecule. Electronic processes in the NO dimerization and the CO oxidation with the O atom adsorbed to Cu38 are discussed in terms of the charge-transfer interaction with Cu38 and Frontier orbital energy of Cu38.
机译:这里的密度泛函理论计算表明,CO催化Cu38催化的NO还原不是通过NO离解吸附而是通过NO二聚发生的。 NO以桥接方式吸附到两个Cu原子上。 NO的吸附能量比CO大得多。被吸附的NO分子的N-O键断裂需要非常大的活化能(ΔG°?)。另一方面,两个NO分子的二聚化在Δ38°Δ小的情况下在Cu38表面上发生。极负的吉布斯反应能(ΔG°)形成吸附在Cu38上的ONNO物种。然后,CO分子被吸附在ONNO物种的邻近位置,并与ONNO反应,以较小的ΔG°诱导N–O键断裂。 ΔG°极负,导致气相中吸附在Cu38和CO2分子上的N2O的形成。 N2O从Cu38中解离出来,然后以最稳定的吸附结构重新吸附到Cu38中。当ΔG°小时,N2O的N–O键裂解容易发生。 ΔG°明显为负,形成N2分子和吸附在Cu38上的O原子。 O原子与CO分子反应生成CO2并再生Cu38,这是决定速率的。实验中观察到在CO还原Cu /γ-Al2O3催化的NO还原过程中,N2O种类与该反应机理相吻合。该机理不同于Rh催化剂的机理,后者是通过NO分子的N–O键断裂而发生的。从与Cu38的电荷转移相互作用和Cu38的前沿轨道能量的角度讨论了NO二聚化和CO吸附O原子吸附到Cu38中的电子过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号