首页> 美国卫生研究院文献>ACS Omega >Catalysis of Cu Cluster for NO Reduction by CO: TheoreticalInsight into the Reaction Mechanism
【2h】

Catalysis of Cu Cluster for NO Reduction by CO: TheoreticalInsight into the Reaction Mechanism

机译:铜团簇催化CO还原NO的理论研究洞悉反应机制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Density functional theory calculations here elucidated that Cu38-catalyzed NO reduction by CO occurred not through NO dissociative adsorption but through NO dimerization. NO is adsorbed to two Cu atoms in a bridging manner. NO adsorption energy is much larger than that of CO. N–O bond cleavage of the adsorbed NO molecule needs a very large activation energy (ΔG°). On the other hand, dimerization of two NO molecules occurs on the Cu38 surface with small ΔG° and very negative Gibbs reaction energy (ΔG°) to form ONNO species adsorbed to Cu38. Then, a CO molecule is adsorbed at the neighboring position to the ONNO species and reacts with the ONNO to induce N–O bond cleavage with small ΔG° and very negative ΔG°, leading to the formation of N2O adsorbed on Cu38 and CO2 molecule in the gas phase. N2O dissociates from Cu38, and then it is readsorbed to Cu38 in the most stable adsorption structure. N–O bond cleavage of N2O easily occurs with small ΔG° and significantly negative ΔG° to form the N2 molecule and the O atom adsorbed on Cu38. The O atom reacts with the CO molecule to afford CO2 and regenerate Cu38, which is rate-determining. N2O species was experimentally observed in Cu/γ-Al2O3-catalyzed NO reduction by CO, which is consistentwith this reaction mechanism. This mechanism differs from that proposedfor the Rh catalyst, which occurs via N–O bond cleavage ofthe NO molecule. Electronic processes in the NO dimerization and theCO oxidation with the O atom adsorbed to Cu38 are discussedin terms of the charge-transfer interaction with Cu38 andFrontier orbital energy of Cu38.
机译:这里的密度泛函理论计算表明,CO催化Cu38催化的NO还原不是通过NO离解吸附而是通过NO二聚发生的。 NO以桥接方式吸附到两个Cu原子上。 NO的吸附能量比CO大得多。吸附的NO分子的N–O键断裂需要非常大的活化能(ΔG°)。另一方面,两个NO分子以较小的ΔG°和极负的吉布斯反应能(ΔG°)在Cu38表面发生二聚,从而形成吸附在Cu38上的ONNO。然后,CO分子被吸附到ONNO物种的邻近位置,并与ONNO反应,以较小的ΔG°和非常负的ΔG°诱导N–O键断裂,导致形成N2O在气相中吸附在Cu38和CO2分子上。 N2O从Cu38中解离出来,然后以最稳定的吸附结构重新吸附到Cu38中。 N2O的N–O键裂解很容易以较小的ΔG°和显着的负ΔG°发生,从而形成N2分子和吸附在Cu38上的O原子。 O原子与CO分子反应生成CO2并再生Cu38,这是决定速率的。实验观察到Cu /γ-Al2O 3 被CO还原NO的N2O种类,这是一致的通过这种反应机理。该机制与建议的机制不同的Rh催化剂,是通过N-O键的裂解NO分子。 NO二聚化过程中的电子过程讨论了O原子吸附在Cu 38 上的CO氧化与Cu 38 和Cu 38 的前沿轨道能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号