首页> 外文期刊>ACS Omega >Toward a Better Understanding and Optimization of the Electrochemical Activity of Na-Ion TiO2 Anatase Anodes Using Uniform Nanostructures and Ionic Liquid Electrolytes
【24h】

Toward a Better Understanding and Optimization of the Electrochemical Activity of Na-Ion TiO2 Anatase Anodes Using Uniform Nanostructures and Ionic Liquid Electrolytes

机译:利用均匀的纳米结构和离子液体电解质更好地理解和优化Na +离子TiO 2 锐钛矿型阳极的电化学活性

获取原文
获取外文期刊封面目录资料

摘要

TiO_(2) anatase has emerged as a promising anode for Na-ion batteries (SIBs). However, widespread use of this anode is severely limited by a series of factors that need to be identified and understood to further improve their electrochemical response. Here, we have taken benefit from the versatility of a self-assembly seeding-assisted method to obtain a variety of uniform high-surface-area undoped TiO_(2) anatase nanostructures. Electrodes built from these uniform nanostructures in combination with a safe ionic liquid electrolyte have allowed a systematic study on some of the factors that determine the electrochemical activity of Na-ion anatase anodes. Interestingly, the inherent low penetrability of the ionic liquid electrolyte has resulted in an unexpected asset to clarify large differences in Na~(+) uptake by different nanostructures. Basically, solid electrolyte interface (SEI) effects were maximized and therefore clearly separated from electrochemical reactions strictly associated with the anatase anode. Thus, for electrodes built from nanostructures that preserved their initial conformation after cycling, the first discharge showed Na~(+) uptakes well-beyond those of the Ti~(4+)/Ti~(3+) redox couple. This large uptake has been associated with an apparent reversible reaction that operates below ca. 0.5–0.7 V and an irreversible mechanism that operates at lower voltages (ca. 0.3 V). However, for electrodes built from nanostructures that favored SEI formation, the irreversible reaction associated with the plateau at ca. 0.3 V was not observed during the first discharge. In accordance, the total Na~(+) uptake did not reach values beyond those of the corresponding Ti~(4+)/Ti~(3+) redox couple. Irreversibility, in this case, is associated with SEI formation. Our results also establish the strong effect that size at different scale levels has in the electrochemical response of anatase anodes for SIBs (changes from ca. 6 to 11 nm in crystal sizes and from 50 to 80 in nanostructure sizes led to pronounced differences). This result emphasizes that any conclusions on mechanistic studies other than size effects must be done under strict control on size at various scales (size as a strict control variable at crystal level and nanostructure or in more general terms aggregate scale levels). Finally, we have found that at 30 and 60 °C the performance of the best of the electrodes, with the low-flammable and low-volatile ionic liquid electrolyte, is comparable to that of similar nanostructures immersed in their Li-ion electrolyte counterparts. This result is promising, as in stationary applications where SIBs could replace Li-ion batteries, large accumulation of storage components imposes more strict safety criteria. Basically, power criteria can be relaxed in response to more strict safety criteria.
机译:TiO_(2)锐钛矿已经成为Na离子电池(SIB)的有希望的阳极。然而,该阳极的广泛使用受到一系列因素的严重限制,这些因素需要被识别和理解以进一步改善其电化学响应。在这里,我们受益于自组装种子辅助方法的多功能性,以获得各种均匀的高表面积无掺杂TiO_(2)锐钛矿纳米结构。由这些均一的纳米结构与安全的离子液体电解质组合而成的电极,使得对决定Na离子锐钛矿阳极电化学活性的某些因素的系统研究成为可能。有趣的是,离子液体电解质固有的低渗透性导致人们出乎意料的资产来澄清不同纳米结构对Na〜(+)吸收的巨大差异。基本上,固体电解质界面(SEI)的作用最大,因此与严格与锐钛矿阳极相关的电化学反应明显分开。因此,对于由循环后保留其初始构象的纳米结构构建的电极,首次放电显示Na〜(+)的吸收量远远超过Ti〜(4 +)/ Ti〜(3+)氧化还原对的吸收量。这种大量的吸收与在低于约200℃下运行的明显的可逆反应有关。 0.5-0.7 V,以及在较低电压(约0.3 V)下运行的不可逆机制。但是,对于由有利于SEI形成的纳米结构构建的电极,不可逆的反应与约200℃的平台相关。在第一次放电期间未观察到0.3V。因此,总的Na〜(+)吸收量未达到相应的Ti〜(4 +)/ Ti〜(3+)氧化还原对的值。在这种情况下,不可逆性与SEI的形成有关。我们的结果还证实了不同规模水平的尺寸对SIB的锐钛矿型阳极的电化学响应具有很强的影响(晶体尺寸从大约6到11 nm改变,纳米结构尺寸从50到80纳米改变导致明显的差异)。该结果强调,除尺寸效应外,任何有关机械研究的结论都必须在各种尺寸的尺寸的严格控制下做出(尺寸是晶体级和纳米级的严格控制变量,或更笼统地说是聚合级)。最后,我们发现,在30和60°C时,具有低易燃和低挥发性离子液体电解质的最佳电极性能可与浸入其锂离子电解质类似物的类似纳米结构相媲美。这一结果令人鼓舞,因为在SIB可以替代锂离子电池的固定式应用中,大量存储组件构成了更加严格的安全标准。基本上,可以根据更严格的安全标准放宽功率标准。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号