...
首页> 外文期刊>ACS Omega >Thermal Processing of Chloride-Contaminated Plutonium Dioxide
【24h】

Thermal Processing of Chloride-Contaminated Plutonium Dioxide

机译:氯化物污染的二氧化ton的热处理

获取原文

摘要

Over 80 heat treatment experiments have been made on samples of chloride-contaminated plutonium dioxide retrieved from two packages in storage at Sellafield. These packages dated from 1974 and 1980 and were produced in a batch process by conversion of plutonium oxalate in a furnace at around 550 °C. The storage package contained a poly(vinyl chloride) (PVC) bag between the screw top inner and outer metal cans. Degradation of the PVC has led to adsorption of hydrogen chloride together with other atmospheric gases onto the PuO2 surface. Analysis by caustic leaching and ion chromatography gave chloride contents of ~2000 to >5000 ppm Cl (i.e., μgCl g–1 of the original sample). Although there are some subtle differences, in general, there is surprisingly good agreement in results from heat treatment experiments for all the samples from both cans. Mass loss on heating (LOH) plateaus at nearly 3 wt % above 700 °C, although samples that were long stored under an air atmosphere or preexposed to 95% relative humidity atmospheres, gave higher LOH up to ~4 wt %. The majority of the mass loss is due to adsorbed water and other atmospheric gases rather than chloride. Heating volatilizes chloride only above ~400 °C implying that simple physisorption of HCl is not the main cause of contamination. Interestingly, above 700 °C, >100% of the initial leachable chloride can be volatilized. Surface (leachable) chloride decreases quickly with heat treatment temperatures up to ~600 °C but only slowly above this temperature. Storage in air atmosphere post-heat treatment apparently leads to a reequilibration as leachable chloride increases. The presence of a “nonleachable” form of chloride was thus inferred and subsequently confirmed in PuO2 samples (pre- and post-heat treatment) that were fully dissolved and analyzed for the total chloride inventory. Reheating samples in either air or argon at temperatures up to the first heat treatment temperature did not volatilize significant amounts of additional chloride. With regard to a thermal stabilization process, heat treatment in flowing air at 800 °C with cooling and packaging under dry argon appears optimal, particularly, if thinner powder beds can be maintained. From electron microscopy, heat treatment appeared to have the most effect on degrading the square platelet particles compared to those with the trapezoidal morphology.
机译:从在Sellafield的两个包装中回收的氯化物污染的二氧化samples样品进行了80多次热处理实验。这些包装的生产日期为1974年和1980年,是通过在约550°C的熔炉中将草酸p转化成批料生产的。该存储包装在螺旋形顶部和外部金属罐之间装有一个聚氯乙烯(PVC)袋。 PVC的降解导致氯化氢与其他大气气体一起吸附到PuO2表面上。通过苛性浸出和离子色谱法进行分析,得出氯化物的含量约为2000〜5000 ppm Cl(即,原始样品的μgClg-1)。尽管存在一些细微的差异,但总的来说,两个罐中所有样品的热处理实验结果都出乎意料的一致。尽管长时间保存在空气中或预先暴露于95%相对湿度的环境中的样品,在加热(LOH)平稳状态下的质量损失接近3 wt%,但给出的LOH最高可达〜4 wt%。质量损失的大部分归因于吸附的水和其他大气气体,而不是氯化物。加热只能使氯化物在〜400°C以上挥发,这意味着简单的HCl物理吸附并不是造成污染的主要原因。有趣的是,高于700°C,> 100%的初始可浸出氯化物会挥发。表面(可浸出的)氯化物在高达〜600°C的热处理温度下迅速降低,但仅在该温度以上缓慢降低。热处理后在大气中的储存显然会导致可浸出氯化物增加而导致重新平衡。因此推断出存在“不可浸出”形式的氯化物,随后在完全溶解并分析了总氯化物存量的PuO2样品中(热处理前后)进行了确认。在空气或氩气中将样品重新加热到最高第一个热处理温度不会使大量氯气挥发。关于热稳定过程,在干燥的氩气下冷却和包装在800°C的流动空气中进行热处理似乎是最佳选择,特别是如果可以保持较薄的粉末床。从电子显微镜观察,与梯形形态的那些相比,热处理似乎对方形血小板颗粒的降解影响最大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号