首页> 外文期刊>ACS Omega >Surface Plasmon Polaritons on Rough Metal Surfaces: Role in the Formation of Laser-Induced Periodic Surface Structures
【24h】

Surface Plasmon Polaritons on Rough Metal Surfaces: Role in the Formation of Laser-Induced Periodic Surface Structures

机译:粗糙金属表面上的表面等离激元极化子:在激光诱导的周期性表面结构形成中的作用

获取原文
           

摘要

The formation of self-organized laser-induced periodic surface structures (LIPSS) in metals, semiconductors, and dielectrics upon pulsed laser irradiation is a well-known phenomenon, receiving increased attention because of their huge technological potential. For the case of metals, a major role in this process is played by surface plasmon polaritons (SPPs) propagating at the interface of the metal with the medium of incidence. Yet, simple and advanced models based on SPP propagation sometimes fail to explain experimental results, even of basic features such as the LIPSS period. We experimentally demonstrate, for the particular case of LIPSS on Cu, that significant deviations of the structure period from the predictions of the simple plasmonic model are observed, which are very pronounced for elevated angles of laser incidence. In order to explain this deviation, we introduce a model based on the propagation of SPPs on a rough surface that takes into account the influence of the specific roughness properties on the SPP wave vector. Good agreement of the modeling results with the experimental data is observed, which highlights the potential of this model for the general understanding of LIPSS in other metals.
机译:脉冲激光辐照在金属,半导体和电介质中形成自组织激光诱导的周期性表面结构(LIPSS)是一种众所周知的现象,由于其巨大的技术潜力而受到越来越多的关注。对于金属而言,在此过程中的主要作用是在金属与入射介质的界面处传播的表面等离激元极化子(SPP)。但是,基于SPP传播的简单高级模型有时甚至无法解释实验结果,甚至不能解释LIPSS时期等基本特征。我们通过实验证明,对于在铜上的LIPSS的特殊情况,观察到结构周期与简单等离激元模型的预测存在显着偏差,这对于提高激光入射角非常明显。为了解释这种偏差,我们引入了一个基于SPP在粗糙表面上的传播的模型,该模型考虑了特定粗糙度特性对SPP波矢量的影响。观察到建模结果与实验数据吻合良好,这突显了该模型对于一般理解其他金属中的LIPSS的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号