...
首页> 外文期刊>ACS Omega >Interfacial Doping of Heteroatom in Porous SnO2 for Highly Sensitive Surface Properties
【24h】

Interfacial Doping of Heteroatom in Porous SnO2 for Highly Sensitive Surface Properties

机译:SnO 2 中杂原子的界面掺杂对表面敏感性的影响

获取原文

摘要

The design and synthesis of heteroatom-doping porous materials with unique surface/interfaces are of great significance for enhancing the sensitive surface performance in the fields of catalytic energy, especially gas sensor, CO oxidation, and ammonium perchlorate decomposition. Usually, the template method followed by a high-temperature calcination process is considered as the routes of choice in preparing ion-doped porous materials, but it requires extra templates and will undergo complicated steps. Here, we present a simple fusion/diffusion-controlled intermetallics-transformation method to synthesize various heteroatom-doping porous SnO_(2) only by changing the species of intermetallics. By this new method, Ni-doped popcornlike SnO_(2) with plenty of ~30 nm pores and two kinds of Cu-doped SnO_(2) nanocages was successfully constructed. Phase-evolution investigations demonstrated that growth kinetics, diffusion, and solubility of the intermediates are highly related to the architecture of final products. Moreover, low-solid-solution limit of MO_(x ) (M: Ni, Cu) in SnO_(2) made the ion dope close to the surface to form a special surface/interfaces structure, and selective removal of MO_(x ) produce abundant pores to increase the surface area. As a consequence, Ni-doped composite exhibits higher sensitivity in formaldehyde detection with a relative low-operating temperature in a short response time (i.e., 23.7–50 ppm formaldehyde, 170 °C, and 5 s) and Cu-doped composites show excellent activity in decreasing the catalytic temperature of CO oxidation and ammonium perchlorate decomposition. The fusion/diffusion-controlled intermetallics-transformation method reported in this work could be readily adopted for the synthesis of other active heteroatom-doping porous materials for multipurpose uses.
机译:具有独特表面/界面的杂原子掺杂多孔材料的设计和合成对于增强催化能领域中的敏感表面性能,特别是在气体传感器,CO氧化和高氯酸铵分解方面具有重要意义。通常,模板方法后进行高温煅烧工艺被认为是制备离子掺杂多孔材料的首选方法,但是它需要额外的模板,并且将经历复杂的步骤。在这里,我们提出了一种简单的熔融/扩散控制金属间化合物转化方法,仅通过改变金属间化合物的种类即可合成各种杂原子掺杂的多孔SnO_(2)。通过这种新方法,成功构建了具有大量〜30 nm孔的掺Ni爆米花状SnO_(2)和两种Cu掺杂SnO_(2)纳米笼。相演化研究表明,中间体的生长动力学,扩散和溶解度与最终产品的结构高度相关。此外,SnO_(2)中MO_(ix)(M:Ni,Cu)的低固溶极限使离子掺杂物靠近表面形成特殊的表面/界面结构,并选择性去除MO_ (x)产生大量的孔以增加表面积。结果,掺杂镍的复合材料在较短的响应时间内(即23.7–50 ppm甲醛,170°C和5 s)的相对较低的工作温度下,在甲醛检测中表现出更高的灵敏度,而掺杂铜的复合材料表现出优异的性能。活性降低了CO氧化和高氯酸铵分解的催化温度。在这项工作中报道的熔融/扩散控制金属间化合物的转化方法可以很容易地用于合成其他用途的杂化活性杂原子多孔材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号