...
首页> 外文期刊>Advances in Mathematical Physics >A Quantum Mermin-Wagner Theorem for a Generalized Hubbard Model
【24h】

A Quantum Mermin-Wagner Theorem for a Generalized Hubbard Model

机译:广义Hubbard模型的量子Mermin-Wagner定理

获取原文
   

获取外文期刊封面封底 >>

       

摘要

This paper is the second in a series of papers considering symmetry properties of bosonic quantum systems over 2D graphs, with continuous spins, in the spirit of the Mermin-Wagner theorem. In the model considered here the phase space of a single spin isℋ1=L2(M),whereMis ad-dimensional unit torusM=ℝd/ℤdwith a flat metric. The phase space ofkspins isℋk=L2sym(Mk), the subspace ofL2(Mk)formed by functions symmetric under the permutations of the arguments. The Fock spaceH=⊕k=0,1,…ℋkyields the phase space of a system of a varying (but finite) number of particles. We associate a spaceH≃H(i)with each vertexi∈Γof a graph(Γ,ℰ)satisfying a special bidimensionality property. (Physically, vertexirepresents a heavy “atom” or “ion” that does not move but attracts a number of “light” particles.) The kinetic energy part of the Hamiltonian includes (i)-Δ/2, the minus a half of the Laplace operator onM, responsible for the motion of a particle while “trapped” by a given atom, and (ii) an integral term describing possible “jumps” where a particle may join another atom. The potential part is an operator of multiplication by a function (the potential energy of a classical configuration) which is a sum of (a) one-body potentialsU(1)(x),x∈M, describing a field generated by a heavy atom, (b) two-body potentialsU(2)(x,y),x,y∈M, showing the interaction between pairs of particles belonging to the same atom, and (c) two-body potentialsV(x,y),x,y∈M, scaled along the graph distanced(i,j)between verticesi,j∈Γ, which gives the interaction between particles belonging to different atoms. The system under consideration can be considered as a generalized (bosonic) Hubbard model. We assume that a connected Lie groupGacts onM, represented by a Euclidean space or torus of dimensiond'≤d, preserving the metric and the volume inM. Furthermore, we suppose that the potentialsU(1),U(2), andVareG-invariant. The result of the paper is that any (appropriately defined) Gibbs states generated by the above Hamiltonian isG-invariant, provided that the thermodynamic variables (the fugacityzand the inverse temperatureβ) satisfy a certain restriction. The definition of a Gibbs state (and its analysis) is based on the Feynman-Kac representation for the density matrices.
机译:本文是根据Mermin-Wagner定理的精神考虑连续波自旋的二维图上的玻色子量子系统的对称性的系列论文中的第二篇。在这里考虑的模型中,单个自旋的相空间为ℋ1= L2(M),其中,Mis ad尺寸单位torusM =ℝd/ℤd,采用平坦度量。 kspins的相空间为ℋk= L2sym(Mk),L2(Mk)的子空间由在参数排列下对称的函数形成。 Fock空间H =⊕k= 0,1,…ℋkyields改变(但有限)数量粒子的系统的相空间。我们将空间H≃H(i)与满足特殊二维特性的图(Γ,ℰ)的每个顶点∈Γ关联。 (从物理上讲,顶点表示一个重的“原子”或“离子”,该原子或原子不会移动,但会吸引许多“轻”的粒子。)哈密顿量的动能部分包括(i)-Δ/ 2,负一半拉普拉斯算子onM,负责粒子在被给定原子“捕获”时的运动,以及(ii)描述粒子可能与另一个原子结合的可能“跳跃”的积分项。势能部分是一个乘以一个函数(经典构型的势能)的算符,该函数是(a)单体势能U(1)(x),x∈M的总和,描述了由重体产生的场原子,(b)两体电势U(2)(x,y),x,y∈M,显示属于同一原子的粒子对之间的相互作用,以及(c)两体电势V(x,y) ,x,y∈M,沿着顶点之间的距离(i,j)缩放,j∈Γ,得出属于不同原子的粒子之间的相互作用。所考虑的系统可以视为广义(正弦)Hubbard模型。我们假设一个连通的李群在M上以大小为≤d的欧几里德空间或圆环表示,并保留M的度量和体积。此外,我们假设电位U(1),U(2)和VareG不变。本文的结果是,只要热力学变量(逸度和逆温度β)满足一定的限制,上述哈密顿量产生的任何(适当定义的)吉布斯状态都是G不变的。吉布斯状态的定义(及其分析)基于密度矩阵的Feynman-Kac表示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号