首页> 外文期刊>Advances in Materials Physics and Chemistry >Cracks Propagation as a Function of Grain Size Variants on Nanocrystalline Materials’ Yield Stress Produced by Accumulative Roll-Bonding
【24h】

Cracks Propagation as a Function of Grain Size Variants on Nanocrystalline Materials’ Yield Stress Produced by Accumulative Roll-Bonding

机译:裂纹扩展与晶粒度变化的函数关系,纳米晶粒材料通过累积滚焊产生的屈服应力

获取原文
           

摘要

Cracks are usually observed at the edge of materials deformed by accumulative roll bonding from conventional materials to nanostructure materials. The observed cracks then propagate in the materials during grain refinement. The cracks propagation affects the yield stress and the effective fracture energy of nanocrystalline materials. In this study, the impacts of crack propagation when measured as a function of grain size variants on nanocrystalline materials’ yield stress are investigated for a material deformed by accumulative roll-bonding. The study employs experimental data and theoretical concepts of severe plastic deformation and cracks processes in nanocrystalline materials. The current studies also focus on nano-cracks that will not lead to rapid materials failure during grain refinement. The study revealed that crack propagation varied as a function of grain size variants during grain refinement. The study also revealed that nano-crack increased during the deformation of nanostructured materials. The study also revealed that the effective fracture energy decreased as grain refinement took place. The study revealed that nanomaterials yield stress decreased with the increase in effective fracture energy. The current study suggests a theoretical model that shows the generation of nanomaterials cracks during grain refinement as a function of grain size variants. In the model, the cracks propagate on nanocrystalline materials due to the compressive load applied to a material. The model predicts that the generation of cracks as functions of grain size variants impacts the energy level in nanocrystalline materials.
机译:通常在从常规材料到纳米结构材料的累积辊压粘合变形的材料的边缘观察到裂纹。然后观察到的裂纹在晶粒细化过程中在材料中传播。裂纹扩展影响纳米晶材料的屈服应力和有效断裂能。在这项研究中,对于通过累积辊压粘合变形的材料,研究了将裂纹扩展作为晶粒度变化的函数对纳米晶材料屈服应力的影响。该研究采用了实验数据和纳米晶体材料中严重塑性变形和破裂过程的理论概念。当前的研究还集中在纳米裂纹上,纳米裂纹不会在晶粒细化过程中导致材料快速失效。研究表明,在晶粒细化过程中,裂纹扩展随晶粒尺寸变化而变化。研究还表明,纳米裂纹在纳米结构材料变形过程中会增加。研究还表明,有效断裂能会随着晶粒细化而降低。研究表明,纳米材料的屈服应力随着有效断裂能的增加而降低。当前的研究提出了一种理论模型,该模型显示了晶粒细化过程中纳米材料裂纹的产生与晶粒尺寸变化的关系。在模型中,由于施加在材料上的压缩载荷,裂纹在纳米晶体材料上传播。该模型预测,裂纹的产生与晶粒尺寸变化的函数有关,会影响纳米晶材料的能级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号