...
首页> 外文期刊>Advances in Mechanical Engineering >Fatigue reliability analysis of crack growth life using maximum entropy method
【24h】

Fatigue reliability analysis of crack growth life using maximum entropy method

机译:裂纹扩展寿命疲劳可靠性的最大熵分析

获取原文
   

获取外文期刊封面封底 >>

       

摘要

In this article, a new method for fatigue reliability analysis of crack growth life based on the maximum entropy theoryand a long crack propagation model is proposed. A modified generalized passivation-lancet model for long fatigue crackpropagation rate is presented with explicit physical meaning. Experimental results for turbine disk alloy ZSGH4169under different strain ratios and temperatures (at 650 C and room temperature) are used to verify the applicability ofthe new model. Results show that predictions by the proposed model are almost identical to the experimental data. Thepresented model is better than the other three models to reflect the rapid propagation characteristics of the crack. Inorder to perform fatigue reliability estimation, the probabilities of failure are calculated using the maximum entropy theory based on the fatigue crack growth life that derived from the proposed modified crack propagation model and theabove existing three models. Results have shown that maximum entropy theory is very apt for fatigue reliability analysisof turbine disk under different loading conditions with a limited number of samples because it does not need any distribution assumptions for random variables. The effectiveness and accuracy of the combination of fatigue crack propagationmodels and maximum entropy method for fatigue reliability analysis are demonstrated with examples.
机译:本文提出了一种基于最大熵理论和长裂纹扩展模型的裂纹扩展寿命疲劳可靠性分析方法。提出了一种改进的广义长寿命裂纹扩展钝化柳叶刀模型,具有明显的物理意义。涡轮盘合金ZSGH4169在不同的应变比和温度(在650 C和室温下)下的实验结果被用来验证新模型的适用性。结果表明,所提出的模型的预测与实验数据几乎相同。所提出的模型比其他三个模型更好地反映了裂纹的快速传播特性。为了进行疲劳可靠性估计,基于最大疲劳理论,基于疲劳裂纹扩展寿命,计算了失效概率,疲劳寿命是从提出的改进裂纹扩展模型和上述三个模型得出的。结果表明,最大熵理论非常适合于有限载荷条件下不同载荷条件下涡轮盘的疲劳可靠性分析,因为它不需要任何随机变量的分布假设。通过实例证明了疲劳裂纹扩展模型与最大熵方法相结合进行疲劳可靠性分析的有效性和准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号