...
首页> 外文期刊>Computer Assisted Surgery >3D atlas-based registration can calculate malalignment of femoral shaft fractures in six degrees of freedom
【24h】

3D atlas-based registration can calculate malalignment of femoral shaft fractures in six degrees of freedom

机译:基于3D图集的配准可以计算六个自由度的股骨干骨折的错位

获取原文
           

摘要

Objective : This study presents and evaluates a semi-automated algorithm for quantifying malalignment in complex femoral shaft fractures from a single intraoperative cone-beam CT (CBCT) image of the fractured limb.Methods : CBCT images were acquired of complex comminuted diaphyseal fractures created in 9 cadaveric femora (27 cases). Scans were segmented using intensity-based thresholding, yielding image stacks of the proximal, distal and comminuted bone. Semi-deformable and rigid affine registrations to an intact femur atlas (synthetic or cadaveric-based) were performed to transform the distal fragment to its neutral alignment. Leg length was calculated from the volume of bone within the comminution fragment. The transformations were compared to the physical input malalignments.Results : Using the synthetic atlas, translations were within 1.71?±?1.08?mm (medial/lateral) and 2.24?±?2.11?mm (anterior/posterior). The varus/valgus, flexion/extension and periaxial rotation errors were 3.45?±?2.6°, 1.86?±?1.5° and 3.4?±?2.0°, respectively. The cadaveric-based atlas yielded similar results in medial/lateral and anterior/posterior translation (1.73?±?1.28?mm and 2.15?±?2.13?mm, respectively). Varus/valgus, flexion/extension and periaxial rotation errors were 2.3?±?1.3°, 2.0?±?1.6° and 3.4?±?2.0°, respectively. Leg length errors were 1.41?±?1.01?mm (synthetic) and 1.26?±?0.94?mm (cadaveric). The cadaveric model demonstrated a small improvement in flexion/extension and the synthetic atlas performed slightly faster (6?min?24?s?±?50?s versus 8?min?42?s?±?2?min?25?s).Conclusions : This atlas-based algorithm quantified malalignment in complex femoral shaft fractures within clinical tolerances from a single CBCT image of the fractured limb.
机译:目的:本研究提出并评估了一种半自动化算法,该算法可从骨折肢体的单个术中锥形束CT(CBCT)图像量化复杂的股骨干骨折中的错位。方法:获取9具尸体股骨形成了复杂的干骨干骨折(27例)。使用基于强度的阈值分割对扫描进行分段,产生近端,远端和粉碎的骨的图像堆栈。对完整的股骨图集(基于合成或尸体)进行半变形和刚性仿射配准,以将远端片段转换为中性排列。从粉碎碎片中的骨头体积计算腿长。结果:使用合成图集,平移在1.71?±?1.08?mm(内侧/外侧)和2.24?±?2.11?mm(前/后)之间。内翻/外翻,屈曲/伸展和近轴旋转误差分别为3.45±±2.6°,1.86±±1.5°和3.4±±2.0°。基于尸体的图谱在内侧/外侧和前/后平移中产生相似的结果(分别为1.73?±1.28?mm和2.15?±?2.13?mm)。内翻/外翻,屈曲/伸展和近轴旋转误差分别为2.3±±1.3°,2.0±±1.6°和3.4±±2.0°。腿长误差为1.41±±1.01μmm(合成)和1.26±±0.94μmm(尸体)。尸体模型显示屈曲/伸展度略有改善,合成地图集的执行速度稍快(6?min?24?s±±50?s,而8?min?42?s±±2?min?25?s )。结论:这种基于图集的算法从骨折肢体的单个CBCT图像在临床耐受范围内量化了复杂股骨干骨折的错位。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号