...
首页> 外文期刊>Computational and Structural Biotechnology Journal >{STUDY} {OF} {UREMIC} {TOXIN} {FLUXES} {ACROSS} {NANOFABRICATED} {HEMODIALYSIS} {MEMBRANES} {USING} {IRREVERSIBLE} {THERMODYNAMICS}
【24h】

{STUDY} {OF} {UREMIC} {TOXIN} {FLUXES} {ACROSS} {NANOFABRICATED} {HEMODIALYSIS} {MEMBRANES} {USING} {IRREVERSIBLE} {THERMODYNAMICS}

机译:{研究} {OF} {UREMIC} {毒素} {助焊剂} {ACROSS} {NANOFABRICATED} {HEMODIALYSIS} {MEMBERNESS} {使用} {IRREVERSIBLEBLE} {THERMODYNAMICS}

获取原文
           

摘要

Introduction The flux of uremic toxin middle molecules through currently used hemodialysis membranes is suboptimal, mainly because of the membranes' pore architecture. Aim Identifying the modifiable sieving parameters that can be improved by nanotechnology to enhance fluxes of uremic toxins across the walls of dialyzers' capillaries. Methods We determined the maximal dimensions of endothelin, cystatin C, and interleukin – 6 using the macromolecular modeling software, COOT. We also applied the expanded Nernst-Plank equation to calculate the changes in the overall flux as a function of increased electro-migration and pH of the respective molecules. Results In a high flux hemodialyzer, the effective diffusivities of endothelin, cystatin C, and interleukin – 6 are 15.00 × 10?10 cm2/s, 7.7 × 10?10 cm2/s, and 5.4 × 10?10 cm2/s, respectively, through the capillaries' walls. In a nanofabricated membrane, the effective diffusivities of endothelin, cystatin C, and interleukin – 6 are 13.87 × 10?7 cm2/s, 5.73 × 10?7 cm2/s, and 3.45 × 10?7 cm2/s, respectively, through a nanofabricated membrane. Theoretical modeling showed that a 96% reduction in the membrane's thickness and the application of an electric potential of 10 mV across the membrane could enhance the flux of endothelin, cystatin C, and interleukin – 6 by a factor of 25. A ΔpH of 0.07 altered the fluxes minimally. Conclusions Nanofabricated hemodialysis membranes with a reduced thickness and an applied electric potential can enhance the effective diffusivity and electro-migration flux of the respective uremic toxins by 3 orders of magnitude as compared to those passing through the high flux hemodialyzer.
机译:简介尿毒症毒素中间分子通过当前使用的血液透析膜的通量不理想,主要是因为膜的孔结构。目的确定可通过纳米技术改进的可修改的筛分参数,以增强穿过透析仪毛细管壁的尿毒症毒素通量。方法我们使用大分子建模软件COOT确定了内皮素,胱抑素C和白介素– 6的最大尺寸。我们还应用了扩展的Nernst-Plank方程来计算总通量随相应分子电迁移和pH的增加而变化。结果在高通量血液透析仪中,内皮素,胱抑素C和白介素– 6的有效扩散率分别为15.00×10?10 cm2 / s,7.7×10?10 cm2 / s和5.4×10?10 cm2 / s。 ,通过毛细管壁。在纳米膜中,通过的内皮素,半胱氨酸蛋白酶抑制剂C和白介素– 6的有效扩散率分别为13.87×10?7 cm2 / s,5.73×10?7 cm2 / s和3.45×10?7 cm2 / s。纳米膜。理论模型表明,膜厚度减少96%,跨膜施加10 mV的电势,可使内皮素,胱抑素C和白介素– 6的通量提高25倍。ΔpH为0.07改变通量最小。结论与通过高通量血液透析仪相比,具有减小的厚度和所施加的电势的纳米制造的血液透析膜可以将各自的尿毒症毒素的有效扩散率和电迁移通量提高3个数量级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号