...
首页> 外文期刊>Computational and Structural Biotechnology Journal >{ESCHERICHIA} {COLI} {REDOX} {MUTANTS} {AS} {MICROBIAL} {CELL} {FACTORIES} {FOR} {THE} {SYNTHESIS} {OF} {REDUCED} {BIOCHEMICALS}
【24h】

{ESCHERICHIA} {COLI} {REDOX} {MUTANTS} {AS} {MICROBIAL} {CELL} {FACTORIES} {FOR} {THE} {SYNTHESIS} {OF} {REDUCED} {BIOCHEMICALS}

机译:{ESCHERICHIA} {COLI} {REDOX} {MUTNTS} {AS} {微生物} {CELL} {工厂} {FOR} {THE} {合成} {OF} {减少} {生物化学}

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Bioprocesses conducted under conditions with restricted {O2} supply are increasingly exploited for the synthesis of reduced biochemicals using different biocatalysts. The model facultative aerobe Escherichia coli, the microbial cell factory par excellence, has elaborate sensing and signal transduction mechanisms that respond to the availability of electron acceptors and alternative carbon sources in the surrounding environment. In particular, the ArcBA and CreBC two-component signal transduction systems are largely responsible for the metabolic regulation of redox control in response to {O2} availability and carbon source utilization, respectively. Significant advances in the understanding of the biochemical, genetic, and physiological duties of these regulatory systems have been achieved in recent years. This situation allowed to rationally-design novel engineering approaches that ensure optimal carbon and energy flows within central metabolism, as well as to manipulate redox homeostasis, in order to optimize the production of industrially-relevant metabolites. In particular, metabolic flux analysis provided new clues to understand the metabolic regulation mediated by the ArcBA and CreBC systems. Genetic manipulation of these regulators proved useful for designing microbial cells factories tailored for the synthesis of reduced biochemicals with added value, such as poly(3-hydroxybutyrate), under conditions with restricted {O2} supply. This network-wide strategy is in contrast with traditional metabolic engineering approaches, that entail direct modification of the pathway(s) at stake, and opens new avenues for the targeted modulation of central catabolic pathways at the transcriptional level.
机译:在{O 2}供应受限的条件下进行的生物过程已被越来越多地用于利用不同的生物催化剂合成还原的生物化学物质。兼性的好氧大肠杆菌模型,是卓越的微生物细胞工厂,具有精心设计的感应和信号转导机制,可响应周围环境中电子受体和替代碳源的可用性。特别是,ArcBA和CreBC两组分信号转导系统主要负责氧化还原控制的代谢调节,分别响应{O2}可用性和碳源利用率。近年来,在对这些调节系统的生化,遗传和生理职责的理解上取得了重大进展。这种情况允许合理设计新颖的工程方法,以确保最佳的碳和能量在中央代谢中的流动,并控制氧化还原稳态,以优化与工业相关的代谢产物的生产。尤其是,代谢通量分析为了解由ArcBA和CreBC系统介导的代谢调控提供了新的线索。这些调节剂的遗传操作被证明可用于设计微生物细胞工厂,这些工厂专门为在{O2}供应受限的条件下合成具有附加价值的还原型生化试剂(例如聚(3-羟基丁酸))而设计。该网络范围的策略与传统的代谢工程方法相反,传统的代谢工程方法需要直接修饰相关途径,并为转录水平的中央分解代谢途径的靶向调控开辟了新途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号