首页> 外文期刊>Clinical and Experimental Vaccine Research >Polyionic vaccine adjuvants: another look at aluminum salts and polyelectrolytes
【24h】

Polyionic vaccine adjuvants: another look at aluminum salts and polyelectrolytes

机译:聚离子疫苗佐剂:另一种视角看铝盐和聚电解质

获取原文
       

摘要

Adjuvants improve the adaptive immune response to a vaccine antigen by modulating innate immunity or facilitating transport and presentation. The selection of an appropriate adjuvant has become vital as new vaccines trend toward narrower composition, expanded application, and improved safety. Functionally, adjuvants act directly or indirectly on antigen presenting cells (APCs) including dendritic cells (DCs) and are perceived as having molecular patterns associated either with pathogen invasion or endogenous cell damage (known as pathogen associated molecular patterns [PAMPs] and damage associated molecular patterns [DAMPs]), thereby initiating sensing and response pathways. PAMP-type adjuvants are ligands for toll-like receptors (TLRs) and can directly affect DCs to alter the strength, potency, speed, duration, bias, breadth, and scope of adaptive immunity. DAMP-type adjuvants signal via proinflammatory pathways and promote immune cell infiltration, antigen presentation, and effector cell maturation. This class of adjuvants includes mineral salts, oil emulsions, nanoparticles, and polyelectrolytes and comprises colloids and molecular assemblies exhibiting complex, heterogeneous structures. Today innovation in adjuvant technology is driven by rapidly expanding knowledge in immunology, cross-fertilization from other areas including systems biology and materials sciences, and regulatory requirements for quality, safety, efficacy and understanding as part of the vaccine product. Standardizations will aid efforts to better define and compare the structure, function and safety of adjuvants. This article briefly surveys the genesis of adjuvant technology and then re-examines polyionic macromolecules and polyelectrolyte materials, adjuvants currently not known to employ TLR. Specific updates are provided for aluminum-based formulations and polyelectrolytes as examples of improvements to the oldest and emerging classes of vaccine adjuvants in use.
机译:佐剂通过调节先天免疫力或促进转运和呈递而改善了对疫苗抗原的适应性免疫反应。随着新疫苗趋向于更窄的组成,更广泛的应用和更高的安全性,选择合适的佐剂已变得至关重要。在功能上,佐剂直接或间接作用于包括树突状细胞(DC)在内的抗原呈递细胞(APC),并被认为具有与病原体入侵或内源性细胞损伤相关的分子模式(称为病原体相关分子模式[PAMPs]和损伤相关分子)模式[DAMP]),从而启动感应和响应路径。 PAMP型佐剂是toll样受体(TLR)的配体,可以直接影响DC,从而改变适应性免疫的强度,效价,速度,持续时间,偏倚,广度和范围。 DAMP型佐剂通过促炎途径发出信号,并促进免疫细胞浸润,抗原呈递和效应细胞成熟。这类佐剂包括无机盐,油乳剂,纳米颗粒和聚电解质,并包含具有复杂异质结构的胶体和分子组件。如今,佐剂技术的创新是通过快速扩展免疫学知识,来自其他领域(包括系统生物学和材料科学)的交叉受精技术以及对作为疫苗产品一部分的质量,安全性,功效和了解的监管要求而推动的。标准化将有助于更好地定义和比较佐剂的结构,功能和安全性。本文简要概述了佐剂技术的起源,然后重新检查了聚离子大分子和聚电解质材料(目前尚不知道可使用TLR的佐剂)。提供了针对铝基制剂和聚电解质的特定更新,以作为对使用中最古老和新兴类别的疫苗佐剂的改进的示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号