首页> 外文期刊>Climate of the Past Discussions >Modelling firn thickness evolution during the last deglaciation: constraints on sensitivity to temperature and impurities
【24h】

Modelling firn thickness evolution during the last deglaciation: constraints on sensitivity to temperature and impurities

机译:在最后一次冰消期间模拟炉壁厚度演变:对温度和杂质敏感性的限制

获取原文
           

摘要

The transformation of snow into ice is a complex phenomenon that is difficult to model. Depending on surface temperature and accumulation rate, it may take several decades to millennia for air to be entrapped in ice. The air is thus always younger than the surrounding ice. The resulting gas–ice age difference is essential to documenting the phasing between CO2 and temperature changes, especially during deglaciations. The air trapping depth can be inferred in the past using a firn densification model, or using δ15N of air measured in ice cores. All firn densification models applied to deglaciations show a large disagreement with δ15N measurements at several sites in East Antarctica, predicting larger firn thickness during the Last Glacial Maximum, whereas δ15N suggests a reduced firn thickness compared to the Holocene. Here we present modifications of the LGGE firn densification model, which significantly reduce the model–data mismatch for the gas trapping depth evolution over the last deglaciation at the coldest sites in East Antarctica (Vostok, Dome C), while preserving the good agreement between measured and modelled modern firn density profiles. In particular, we introduce a dependency of the creep factor on temperature and impurities in the firn densification rate calculation. The temperature influence intends to reflect the dominance of different mechanisms for firn compaction at different temperatures. We show that both the new temperature parameterization and the influence of impurities contribute to the increased agreement between modelled and measured δ15N evolution during the last deglaciation at sites with low temperature and low accumulation rate, such as Dome C or Vostok. We find that a very low sensitivity of the densification rate to temperature has to be used in the coldest conditions. The inclusion of impurity effects improves the agreement between modelled and measured δ15N at cold East Antarctic sites during the last deglaciation, but deteriorates the agreement between modelled and measured δ15N evolution at Greenland and Antarctic sites with high accumulation unless threshold effects are taken into account. We thus do not provide a definite solution to the firnification at very cold Antarctic sites but propose potential pathways for future studies.
机译:雪到冰的转化是一个复杂的现象,很难建模。取决于表面温度和累积速率,空气可能需要几十年到几千年的时间才能被困在冰中。因此,空气总是比周围的冰还年轻。由此产生的气冰年龄差异对于记录CO2和温度变化之间的相位至关重要,尤其是在冰期期间。过去可以使用烧成密度模型或冰芯中测得的空气的δ15N来推断出空气的捕集深度。在南极东部的几个地点,所有应用于冰期的造粒致密化模型均与δ15N的测量结果存在很大差异,预测在最后一次冰期最大时期的造粒厚度较大,而δ15N则表明与全新世相比,造粒厚度减小了。在这里,我们介绍LGGE烧结致密化模型的修改,该模型可以极大地减少东极南极最冷地点(Vostok,圆顶C)最后一次冰消过程中气体捕集深度演化的模型数据失配,同时保持实测值之间的良好一致性。和模拟的现代密度分布图。特别地,我们在烧成密度计算中引入了蠕变因子对温度和杂质的依赖性。温度影响旨在反映在不同温度下烧结压实的不同机制的主导地位。我们表明,新的温度参数化和杂质的影响都有助于在温度低且积聚速率低的地点(如Dome C或Vostok)的最后一次冰消作用期间,模拟和测量的δ15N演化之间增加的一致性。我们发现在最冷的条件下必须使用致密化率对温度的非常低的灵敏度。在最后一次冰消融化过程中,杂质影响的包含改善了南极东部冰冷地区模拟和实测δ15N演化之间的一致性,但除非考虑阈值效应,否则格陵兰岛和南极高累积点的模拟和实测δ15N演化之间的一致性就会恶化。因此,我们没有为南极非常寒冷的地点的烧成提供确切的解决方案,但提出了未来研究的潜在途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号