...
首页> 外文期刊>Chemical science >Nanobubble-embedded inorganic 808?nm excited upconversion nanocomposites for tumor multiple imaging and treatment
【24h】

Nanobubble-embedded inorganic 808?nm excited upconversion nanocomposites for tumor multiple imaging and treatment

机译:纳米气泡嵌入的无机808?nm激发的上转换纳米复合材料,用于肿瘤的多重成像和治疗

获取原文
           

摘要

Contrast reagents for ultrasound imaging are widely used in clinical medical diagnosis because ultrasound resolution is limited. Contrast agents must be utilized to enhance the image resolution. At present, microbubbles (MBs) and nanobubbles (NBs) are the main contrast reagent candidates for improving the signal resolution. Fluorescence upconversion nanoparticles provide high sensitivity and also function as nanocarriers. This can label tumor cells in a specific organ under irradiation of near-infrared (NIR) light. However, despite the use of NIR light, the penetration depth of NIR is only approximately 15 mm. Thus, we combine fluorescence with ultrasonic imaging to achieve the effect of multiple imaging and solve the low penetration depth of fluorescence imaging and the poor resolution of ultrasound imaging. The dual imaging modalities achieved higher resolution or signal to noise ratios. In this study, Nd ~(3+) -sensitized upconversion nanoparticles (UCNPs) are combined with graphitic carbon nitride quantum dots (CNs) and embedded in NBs (UCNP–CN@NBs). The UCNPs are excited by 808 nm light and emit visible and ultraviolet light. Then, the energy of the ultraviolet light is transferred to the CNs to produce reactive oxygen species (ROS) for photodynamic therapy. Ultrasonic waves are also used to promote NB bursting and the release of ROS molecules in photodynamic therapy, leading to cancer cell apoptosis.
机译:由于超声分辨率有限,用于超声成像的造影剂已广泛用于临床医学诊断。必须利用造影剂来增强图像分辨率。目前,微泡(MB)和纳米泡(NB)是用于提高信号分辨率的主要对比剂候选物。荧光上转换纳米粒子具有很高的灵敏度,并且还可以用作纳米载体。这可以在近红外(NIR)光照射下标记特定器官中的肿瘤细胞。然而,尽管使用了近红外光,近红外的穿透深度仅为约15毫米。因此,我们将荧光与超声成像相结合,以达到多重成像的效果,并解决了荧光成像的低穿透深度和超声成像分辨率差的问题。双重成像模态实现了更高的分辨率或信噪比。在这项研究中,Nd〜(3+)敏化上转换纳米粒子(UCNPs)与石墨氮化碳量子点(CNs)结合并嵌入到NBs中(UCNP–CN @ NBs)。 UCNP被808 nm光激发,并发出可见光和紫外光。然后,紫外光的能量转移到CNs上,产生用于光动力疗法的活性氧(ROS)。在光动力疗法中,超声波还用于促进NB爆发和ROS分子的释放,从而导致癌细胞凋亡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号