首页> 外文期刊>Chemical science >Mechanism of hydrogen peroxide formation by lytic polysaccharide monooxygenase
【24h】

Mechanism of hydrogen peroxide formation by lytic polysaccharide monooxygenase

机译:溶解性多糖单加氧酶形成过氧化氢的机理

获取原文
           

摘要

Lytic polysaccharide monooxygenases (LPMOs) are copper-containing metalloenzymes that can cleave the glycosidic link in polysaccharides. This could become crucial for production of energy-efficient biofuels from recalcitrant polysaccharides. Although LPMOs are considered oxygenases, recent investigations have shown that H _(2) O _(2) can also act as a co-substrate for LPMOs. Intriguingly, LPMOs generate H _(2) O _(2) in the absence of a polysaccharide substrate. Here, we elucidate a new mechanism for H _(2) O _(2) generation starting from an AA10-LPMO crystal structure with an oxygen species bound, using QM/MM calculations. The reduction level and protonation state of this oxygen-bound intermediate has been unclear. However, this information is crucial to the mechanism. We therefore investigate the oxygen-bound intermediate with quantum refinement (crystallographic refinement enhanced with QM calculations), against both X-ray and neutron data. Quantum refinement calculations suggest a Cu( II )–O ~(?) _(2) system in the active site of the AA10-LPMO and a neutral protonated –NH _(2) state for the terminal nitrogen atom, the latter in contrast to the original interpretation. Our QM/MM calculations show that H _(2) O _(2) generation is possible only from a Cu( I ) center and that the most favourable reaction pathway is to involve a nearby glutamate residue, adding two electrons and two protons to the Cu( II )–O ~(?) _(2) system, followed by dissociation of H _(2) O _(2) .
机译:溶菌多糖单加氧酶(LPMO)是含铜的金属酶,可以裂解多糖中的糖苷键。这对于由顽固性多糖生产节能型生物燃料可能至关重要。尽管LPMO被认为是加氧酶,但最近的研究表明H_(2)O_(2)也可以作为LPMO的共底物。有趣的是,在没有多糖底物的情况下,LPMO会生成H_(2)O_(2)。在这里,我们使用QM / MM计算方法阐明了一种新的H _(2)O _(2)生成机理,该机理从结合了氧的AA10-LPMO晶体结构开始。这种与氧结合的中间体的还原水平和质子化状态尚不清楚。但是,此信息对于该机制至关重要。因此,我们对X射线和中子数据进行了量子精细化(通过QM计算增强了晶体学的精细化)研究了与氧结合的中间体。量子精细化计算表明,AA10-LPMO的活性位点具有Cu(II)–O〜(?)_(2)系统,末端氮原子具有中性质子化的–NH _(2)状态,而后者则相反对原始的解释。我们的QM / MM计算表明,仅可以从Cu(I)中心生成H _(2)O _(2),并且最有利的反应途径是涉及附近的谷氨酸残基,向其中添加两个电子和两个质子Cu(II)–O〜(?)_(2)系统,然后解离H _(2)O _(2)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号