首页> 外文期刊>Chemical science >Sequential water molecule binding enthalpies for aqueous nanodrops containing a mono-, di- or trivalent ion and between 20 and 500 water molecules
【24h】

Sequential water molecule binding enthalpies for aqueous nanodrops containing a mono-, di- or trivalent ion and between 20 and 500 water molecules

机译:包含一价,二价或三价离子以及20至500个水分子的水性纳米滴的顺序水分子结合焓

获取原文
       

摘要

Sequential water molecule binding enthalpies, ΔHn,n?1, are important for a detailed understanding of competitive interactions between ions, water and solute molecules, and how these interactions affect physical properties of ion-containing nanodrops that are important in aerosol chemistry. Water molecule binding enthalpies have been measured for small clusters of many different ions, but these values for ion-containing nanodrops containing more than 20 water molecules are scarce. Here, ΔHn,n?1 values are deduced from high-precision ultraviolet photodissociation (UVPD) measurements as a function of ion identity, charge state and cluster size between 20–500 water molecules and for ions with +1, +2 and +3 charges. The ΔHn,n?1 values are obtained from the number of water molecules lost upon photoexcitation at a known wavelength, and modeling of the release of energy into the translational, rotational and vibrational motions of the products. The ΔHn,n?1 values range from 36.82 to 50.21 kJ mol?1. For clusters containing more than ~250 water molecules, the binding enthalpies are between the bulk heat of vaporization (44.8 kJ mol?1) and the sublimation enthalpy of bulk ice (51.0 kJ mol?1). These values depend on ion charge state for clusters with fewer than 150 water molecules, but there is a negligible dependence at larger size. There is a minimum in the ΔHn,n?1 values that depends on the cluster size and ion charge state, which can be attributed to the competing effects of ion solvation and surface energy. The experimental ΔHn,n?1 values can be fit to the Thomson liquid drop model (TLDM) using bulk ice parameters. By optimizing the surface tension and temperature change of the logarithmic partial pressure for the TLDM, the experimental sequential water molecule binding enthalpies can be fit with an accuracy of ±3.3 kJ mol?1 over the entire range of cluster sizes.
机译:依次的水分子结合焓Δ H n n ?1 对于详细了解离子,水和溶质分子之间的竞争性相互作用,以及这些相互作用如何影响在气溶胶化学中很重要的含离子纳米滴的物理特性,至关重要。已经测量了许多不同离子的小簇的水分子结合焓,但是对于包含超过20个水分子的含离子纳米滴的这些值却很少。在这里,Δ H n n ?1 值是从高精确的紫外光解离(UVPD)测量是离子身份,电荷状态和簇大小在20–500个水分子之间以及带有+ 1,+ 2和+3电荷的离子的函数。 Δ H n n ?1 值是从水分子在已知波长的光激发下损失,并对释放到产品的平移,旋转和振动运动中的能量进行建模。 Δ H n n ?1 值的范围为36.82至50.21 kJ mol ?1 。对于包含约250个以上水分子的团簇,结合焓介于蒸发的总热量(44.8 kJ mol ?1 )和散装冰的升华焓(51.0)之间。 kJ mol ?1 )。这些值取决于具有少于150个水分子的簇的离子电荷状态,但是在较大尺寸下的依赖关系可以忽略不计。 Δ H n n ?1 的最小值取决于簇的大小和离子电荷状态,这可以归因于离子溶剂化和表面能的竞争作用。实验Δ H n n ?1 的值可以适合使用大量冰参数的Thomson液滴模型(TLDM)。通过优化TLDM的对数分压的表面张力和温度变化,可以以±3.3 kJ mol ?1 在整个群集大小范围内。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号