...
首页> 外文期刊>ChemEngineering >CFD Simulation of Ethanol Steam Reforming System for Hydrogen Production
【24h】

CFD Simulation of Ethanol Steam Reforming System for Hydrogen Production

机译:乙醇蒸汽重整制氢系统的CFD模拟

获取原文
           

摘要

Hydrogen could be a promising source fuel, and is often considered as a clean energy carrier as it can be produced by ethanol. The use of ethanol presents several advantages, because it is a renewable feedstock, easy to transport, biodegradable, has low toxicity, contains high hydrogen content, and easy to store and handle. Reforming ethanol steam occurs at relatively lower temperatures, compared with other hydrocarbon fuels, and has been widely studied due to the high yield provided for the formation of hydrogen. A new computational fluid dynamics (CFD) simulation model of the ethanol steam reforming (ESR) has been developed in this work. The reforming system model is composed from an ethanol burner and a catalytic bed reactor. The liquid ethanol is burned inside the firebox, then the radiative heat flux from burner is transferred to the catalytic bed reactor for transforming the ethanol steam mixture to hydrogen and carbon dioxide. The proposed computational model is composed of two phases—Simulation of ethanol burner by using Fire Dynamics Simulator software (FDS) (version 5.0) and a multi-physics simulation of the steam reforming process occurring inside the reformer. COMSOL multi-physics software (version 4.3b) has been applied in this work. It solves simultaneously the fluid flow, heat transfer, diffusion with chemical reaction kinetics equations, and structural analysis. It is shown that the heat release rate produced by the ethanol burner, can provide the necessary heat flux required for maintaining the reforming process. It has been found out that the mass fractions of the hydrogen and carbon dioxide mass fraction are increased along the reformer axis. The hydrogen mass fraction increases with enhancing the radiation heat flux. It was shown that Von Mises stresses increases with heat fluxes. Safety issues concerning the structural integrity of the steel jacket are also addressed. This work clearly shows that by using ethanol which has low temperature conversion, the decrease in structural strength of the steel tube is low. The numerical results clearly indicate that under normal conditions of the ethanol reforming (The temperature of the steel is about 600 °C or 1112 °F), the rupture time of the HK-40 steel alloy increases considerably. For this case the rupture time is greater than 100,000 h (more than 11.4 years).
机译:氢可能是有前途的能源,由于可以由乙醇生产,因此经常被视为清洁能源载体。乙醇的使用具有几个优点,因为乙醇是可再生的原料,易于运输,可生物降解,毒性低,氢含量高并且易于存储和处理。与其他烃类燃料相比,重整乙醇蒸汽的温度相对较低,并且由于提供了高产率的氢形成,因此得到了广泛的研究。在这项工作中,开发了一种新的乙醇蒸汽重整(ESR)的计算流体动力学(CFD)仿真模型。重整系统模型由乙醇燃烧器和催化床反应器组成。液体乙醇在燃烧室中燃烧,然后将燃烧器的辐射热通量转移到催化床反应器中,以将乙醇蒸汽混合物转化为氢气和二氧化碳。所提出的计算模型由两个阶段组成:使用Fire Dynamics Simulator软件(FDS)(5.0版)模拟乙醇燃烧器,以及重整器内部发生的蒸汽重整过程的多物理场模拟。 COMSOL多物理场软件(版本4.3b)已应用在这项工作中。它同时解决了流体流动,传热,化学反应动力学方程式扩散和结构分析。结果表明,乙醇燃烧器产生的热量释放速率可以提供维持重整过程所需的必要热通量。已经发现,氢和二氧化碳的质量分数沿重整器轴线增加。氢质量分数随着辐射热通量的增加而增加。结果表明,冯·米塞斯应力随热通量增加。还解决了与钢套结构完整性有关的安全问题。该工作清楚地表明,通过使用具有低温度转化率的乙醇,钢管的结构强度的降低是低的。数值结果清楚地表明,在乙醇重整的正常条件下(钢的温度约为600°C或1112°F),HK-40钢合金的破裂时间会大大增加。对于这种情况,破裂时间大于100,000小时(大于11.4年)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号