首页> 外文期刊>British Journal of Applied Science and Technology >Geometry and Topology-based Segmentation of 2-Manifold Triangular Meshes in R3
【24h】

Geometry and Topology-based Segmentation of 2-Manifold Triangular Meshes in R3

机译:R3中2歧管三角形网格的几何和基于拓扑的分割

获取原文
       

摘要

This manuscript reports a geometrical and a topological methods to segment a closed triangular 2-manifold mesh M ? R3. The mesh M does not self-intersect) and has no border (i.e. watertight. Geometrical and topological segmentation methods require a Boundary Representation (BRep) from M. Building the BRep for M uniforms the triangle orientations, and makes explicit triangle and edge - counter edge adjacency. In the context of Reverse Engineering, the sub-meshes produced by the segmentation are subsequently used to fit parametric surfaces, which are in turn trimmed by the sub-mesh boundaries (forming FACEs). A Full Parametric Boundary Representation requires a seamless set of FACEs, to build watertight SHELLs. The fitting of parametric surfaces to the triangular sub-meshes (i.e. sub-mesh parameterization) requires quasi-developable sub-meshes.As a result, our geometric segmentation places 2 neighboring triangles in the same sub-mesh if their dihedral angle isπ ± η for a small η (angle between their triangle normal vectors is a small η angle). On the other hand, our topological segmentation heuristic classifies triangles in a common sub-mesh if the value of the First eigenfunction of the triangulation graph Laplacian in these triangles falls in the same bin of a histogram formed with the eigenfunction values. The segmentation will obviously depend on the histogram bin distribution. The data sets processed indicate that geometrical segmentation is more convenient for mechanical parts with analytical surfaces. Conversely, topological segmentation works better for organic or artistic shapes. Future work is needed on the tuning of both the dihedral threshold η (for geometrical segmentation) and on the bin distributions of the eigenfunction (for topological segmentation).
机译:该手稿报告了一种几何方法和拓扑方法,用于分割一个闭合的三角形2歧管网格M?。 R3。网格M不会自相交,也没有边界(即水密性。几何和拓扑分割方法需要M的边界表示(BRep)。为M构造BRep会统一三角形的方向,并使三角形和边线成为显式的三角形)在逆向工程的背景下,由分段产生的子网格随后用于拟合参数化曲面,然后通过子网格边界(形成FACE)对参数化曲面进行修整。完整的参数化边界表示需要无缝的一组FACE,以构建防水壳,将参数曲面拟合到三角形子网格(即子网格参数化)需要拟展开的子网格,因此,我们的几何分割将两个相邻的三角形放置在同一子网格中如果它们的二面角对于小η是π±η(它们的三角形法线向量之间的角度是小η角),则进行网格划分;另一方面,我们的拓扑分割启发式如果这些三角形中的三角剖分图拉普拉斯算子的第一本征函数的值落入由本征函数值形成的直方图的同一个区间中,则在一个共同的子网格中对这些三角形进行分类。分割显然将取决于直方图bin分布。处理的数据集表明,对于具有分析表面的机械零件,几何分割更方便。相反,拓扑分割更适合有机或艺术形状。在二面阈值η(用于几何分割)和本征函数的bin分布(用于拓扑分割)的调整方面都需要进一步的工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号