...
首页> 外文期刊>Biogeosciences >Effects of carbon turnover time on terrestrial ecosystem carbon storage
【24h】

Effects of carbon turnover time on terrestrial ecosystem carbon storage

机译:碳周转时间对陆地生态系统碳储量的影响

获取原文
           

摘要

Carbon (C) turnover time is a key factor in determining C storage capacity in various plant and soil pools as well as terrestrial C sink in a changing climate. However, the effects of C turnover time on ecosystem C storage have not been well explored. In this study, we compared mean C turnover times (MTTs) of ecosystem and soil, examined their variability to climate, and then quantified the spatial variation in ecosystem C storage over time from changes in C turnover time and/or net primary production (NPP). Our results showed that mean ecosystem MTT based on gross primary production (GPP; MTTsubECi_/iGPP/sub?=??Csubpool/sub/GPP, 25.0?±?2.7?years) was shorter than soil MTT (MTTsubsoil/sub?=??Csubsoil/sub/NPP, 35.5?±?1.2?years) and NPP-based ecosystem MTT (MTTsubECi_/iNPP/sub?=??Csubpool/sub/NPP, 50.8?±?3?years; Csubpool/sub and Csubsoil/sub referred to ecosystem or soil C storage, respectively). On the biome scale, temperature is the best predictor for MTTsubEC/sub (iR/isup2/sup?=??0.77, ip/i?&?0.001) and MTTsubsoil/sub (iR/isup2/sup?=??0.68, ip/i?&?0.001), while the inclusion of precipitation in the model did not improve the performance of MTTsubEC/sub (iR/isup2/sup?=??0.76, ip/i?&?0.001). Ecosystem MTT decreased by approximately 4?years from 1901 to 2011 when only temperature was considered, resulting in a large C release from terrestrial ecosystems. The resultant terrestrial C release caused by the decrease in MTT only accounted for about 13.5?% of that due to the change in NPP uptake (159.3?±?1.45 vs. 1215.4?±?11.0?Pg?C). However, the larger uncertainties in the spatial variation of MTT than temporal changes could lead to a greater impact on ecosystem C storage, which deserves further study in the future.
机译:在不断变化的气候中,碳(C)转换时间是决定各种植物和土壤池以及陆地C汇的C储存能力的关键因素。但是,碳周转时间对生态系统碳储存的影响尚未得到很好的探讨。在这项研究中,我们比较了生态系统和土壤的平均C周转时间(MTT),检查了它们对气候的变化,然后根据C周转时间和/或净初级生产(NPP)的变化量化了生态系统C储量随时间的空间变化。 )。我们的结果表明,基于初级生产总值的平均生态系统MTT(GPP; MTT EC _ GPP ?= ?? C pool / GPP,25.0 ≤±2.7年;比基于MPP的土壤MTT(MTT soil ?=?C soil / NPP,35.5?±≤1.2?year)要短。生态系统MTT(MTT EC _ NPP ?= ?? C pool / NPP,50.8?±?3?years; C pool 和C 土壤分别指生态系统或土壤C的存储。在生物群落规模上,温度是MTT EC ( R 2 ?=?0.77, p ?<?0.001)和MTT soil ( R 2 ?=?0.68, p ?&lt ; 0.001),而在模型中包含降水并不能改善MTT EC 的性能( R 2 ?=?0.76 , p ≤0.001)。仅考虑温度时,从1901年到2011年,生态系统MTT下降了约4年,导致陆地生态系统中大量C释放。 MTT降低导致的最终陆地碳释放仅占NPP吸收量变化的13.5%(159.3±1.45 vs 1215.4±11.0Pg?C)。但是,MTT空间变化的不确定性大于时间变化,可能会对生态系统碳储量产生更大的影响,值得今后进一步研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号