首页> 美国卫生研究院文献>Philosophical Transactions of the Royal Society B: Biological Sciences >Evaluating the effects of terrestrial ecosystems climate and carbon dioxide on weathering over geological time: a global-scale process-based approach
【2h】

Evaluating the effects of terrestrial ecosystems climate and carbon dioxide on weathering over geological time: a global-scale process-based approach

机译:评估地球生态系统气候和二氧化碳对地质时期内风化的影响:基于过程的全球规模方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Global weathering of calcium and magnesium silicate rocks provides the long-term sink for atmospheric carbon dioxide (CO2) on a timescale of millions of years by causing precipitation of calcium carbonates on the seafloor. Catchment-scale field studies consistently indicate that vegetation increases silicate rock weathering, but incorporating the effects of trees and fungal symbionts into geochemical carbon cycle models has relied upon simple empirical scaling functions. Here, we describe the development and application of a process-based approach to deriving quantitative estimates of weathering by plant roots, associated symbiotic mycorrhizal fungi and climate. Our approach accounts for the influence of terrestrial primary productivity via nutrient uptake on soil chemistry and mineral weathering, driven by simulations using a dynamic global vegetation model coupled to an ocean–atmosphere general circulation model of the Earth's climate. The strategy is successfully validated against observations of weathering in watersheds around the world, indicating that it may have some utility when extrapolated into the past. When applied to a suite of six global simulations from 215 to 50 Ma, we find significantly larger effects over the past 220 Myr relative to the present day. Vegetation and mycorrhizal fungi enhanced climate-driven weathering by a factor of up to 2. Overall, we demonstrate a more realistic process-based treatment of plant fungal–geosphere interactions at the global scale, which constitutes a first step towards developing ‘next-generation’ geochemical models.
机译:钙和镁硅酸盐岩石的全球风化通过使碳酸钙沉淀在海底上,在数百万年的时间尺度上为大气中的二氧化碳(CO2)提供了长期沉降。流域规模的田间研究一致表明,植被增加了硅酸盐岩的风化作用,但是将树木和真菌共生体的影响纳入地球化学碳循环模型中已经依赖于简单的经验比例函数。在这里,我们描述了一种基于过程的方法的开发和应用,该方法可以得出植物根,相关的共生菌根真菌和气候对风化的定量估计。我们的方法考虑了通过营养吸收对地面初级生产力的影响,对土壤化学和矿物风化的影响,这是通过使用动态全球植被模型与地球气候的海洋-大气总环流模型相结合的模拟来进行的。该策略已成功针对世界各地流域的风化观测进行了验证,表明该策略在推算到过去时可能具有一定的实用性。当应用于从215到50 Ma的六个全球模拟套件时,相对于今天,我们发现过去220 Myr的影响明显更大。植被和菌根真菌将气候驱动的风化作用提高了2倍。总的来说,我们在全球范围内展示了一种更现实的基于过程的植物真菌-地球之间相互作用的处理方法,这是迈向“下一代”发展的第一步地球化学模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号