...
首页> 外文期刊>Biogeosciences >Plant communities as drivers of soil respiration: pathways, mechanisms, and significance for global change
【24h】

Plant communities as drivers of soil respiration: pathways, mechanisms, and significance for global change

机译:植物群落作为土壤呼吸的驱动器:全球变化的途径,机制和意义

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Understanding the impacts of plant community characteristics on soil carbondioxide efflux (R) is a key prerequisite for accurate prediction of thefuture carbon (C) balance of terrestrial ecosystems under climate change.However, developing a mechanistic understanding of the determinants of R iscomplicated by the presence of multiple different sources of respiratory Cwithin soil – such as soil microbes, plant roots and their mycorrhizalsymbionts – each with their distinct dynamics and drivers. In this review,we synthesize relevant information from a wide spectrum of sources toevaluate the current state of knowledge about plant community effects onR, examine how this information is incorporated into global climate models,and highlight priorities for future research. Despite often large variationamongst studies and methods, several general trends emerge.Mechanisms whereby plants affect R may be grouped into effects on belowgroundC allocation, aboveground litter properties and microclimate. Withinvegetation types, the amount of C diverted belowground, and hence R, may becontrolled mainly by the rate of photosynthetic C uptake, while amongstvegetation types this should be more dependent upon the specific Callocation strategies of the plant life form. We make the case that plantcommunity composition, rather than diversity, is usually the dominantcontrol on R in natural systems. Individual species impacts on R may belargest where the species accounts for most of the biomass in the ecosystem,has very distinct traits to the rest of the community and/or modulates theoccurrence of major natural disturbances. We show that climate vegetationmodels incorporate a number of pathways whereby plants can affect R, but thatsimplifications regarding allocation schemes and drivers of litterdecomposition may limit model accuracy. We also suggest that under a warmerfuture climate, many plant communities may shift towards dominance by fastgrowing plants which produce large quantities of nutrient rich litter. Wherethis community shift occurs, it could drive an increase in R beyond thatexpected from direct climate impacts on soil microbial activity alone.We identify key gaps in knowledge and recommend them as priorities forfuture work. These include the patterns of photosynthate partitioningamongst belowground components, ecosystem level effects of individual planttraits, and the importance of trophic interactions and species invasions orextinctions for ecosystem processes. A final, overarching challenge is howto link these observations and drivers across spatio-temporal scales topredict regional or global changes in R over long time periods. A moreunified approach to understanding R, which integrates information about planttraits and community dynamics, will be essential for better understanding,simulating and predicting patterns of R across terrestrial ecosystems and itsrole within the earth-climate system.
机译:了解植物群落特征对土壤二氧化碳排放( R )的影响,是准确预测气候变化下陆地生态系统未来碳(C)平衡的关键前提。在土壤中存在多种不同的呼吸源,例如土壤微生物,植物根及其菌根共生体,每种因素都有其独特的动力学和动因,这使得 R 的决定因素变得复杂。在这篇综述中,我们综合了各种来源的相关信息,以评估关于植物群落对 R 的影响的当前知识状态,研究如何将这些信息纳入全球气候模型,并强调未来的重点研究。尽管研究和方法之间经常有很大的差异,但还是出现了一些总体趋势。 植物影响 R 的机制可以归纳为对地下碳分配,地上凋落物特性和小气候的影响。在植被类型内,转移到地下的碳量(因此 R )可能主要受光合碳吸收速率的控制,而在植被类型中,这应更多地取决于植物生命形式的特定分配策略。 。我们认为,植物群落组成而不是多样性通常是自然系统中 R 的主要控制因素。在物种占生态系统中大部分生物量的物种中,对 R 的个体影响可能最大,对其他群落具有非常不同的特征和/或调节主要自然干扰的发生。我们表明,气候植被模型包含许多途径,植物可以影响 R ,但是有关分配方案和凋落物分解驱动因素的简化可能会限制模型的准确性。我们还建议,在未来温暖的气候下,许多植物群落可能会通过生长大量养分丰富的凋落物的速生植物而转向优势地位。发生这种社区转移的地方,可能会导致 R 的增加,超出直接气候对土壤微生物活动的直接影响。 我们确定知识的主要差距,并建议将其作为未来工作的重点。这些包括地下部分中光合产物分配的模式,单个植物性状在生态系统层面的影响以及营养相互作用和物种入侵或消灭对生态系统过程的重要性。最后一个首要的挑战是如何将这些观察和时空尺度的驱动因素联系起来,以预测长期内 R 的区域或全球变化。一种更加统一的理解 R 的方法,该方法整合了有关植物性状和群落动态的信息,对于更好地理解,模拟和预测整个陆地生态系统及其内部的 R 的模式至关重要。地球气候系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号