首页> 外文期刊>Biogeosciences >Initial shifts in nitrogen impact on ecosystem carbon fluxes in an alpine meadow: patterns and causes
【24h】

Initial shifts in nitrogen impact on ecosystem carbon fluxes in an alpine meadow: patterns and causes

机译:氮的初始变化对高寒草甸生态系统碳通量的影响:模式和成因

获取原文
           

摘要

Increases in nitrogen (N) deposition can greatly stimulate ecosystem net carbon (C) sequestration through positive N-induced effects on plant productivity. However, how net ecosystem COsub2/sub exchange (NEE) and its components respond to different N addition rates remains unclear. Using an N addition gradient experiment (six levels: 0, 2, 4, 8, 16, 32?gN?msup?2/sup?yrsup?1/sup) in an alpine meadow on the Qinghai–Tibetan Plateau, we explored the responses of different ecosystem C fluxes to an N addition gradient and revealed mechanisms underlying the dynamic responses. Results showed that NEE, ecosystem respiration (ER), and gross ecosystem production (GEP) all increased linearly with N addition rates in the first year of treatment but shifted to N saturation responses in the second year with the highest NEE (?7.77?±?0.48?μmol?msup?2/sup?ssup?1/sup) occurring under an N addition rate of 8?gN?msup?2/sup?yrsup?1/sup. The saturation responses of NEE and GEP were caused by N-induced accumulation of standing litter, which limited light availability for plant growth under high N addition. The saturation response of ER was mainly due to an N-induced saturation response of aboveground plant respiration and decreasing soil microbial respiration along the N addition gradient, while decreases in soil microbial respiration under high N addition were caused by N-induced reductions in soil pH. We also found that various components of ER, including aboveground plant respiration, soil respiration, root respiration, and microbial respiration, responded differentially to the N addition gradient. These results reveal temporal dynamics of N impacts and the rapid shift in ecosystem C fluxes from N limitation to N saturation. Our findings bring evidence of short-term initial shifts in responses of ecosystem C fluxes to increases in N deposition, which should be considered when predicting long-term changes in ecosystem net C sequestration.
机译:氮(N)沉积的增加会通过氮对植物生产力的积极影响而极大地刺激生态系统净碳(C)的固存。但是,尚不清楚净生态系统CO 2 交换(NEE)及其组成如何响应不同的氮添加率。在高山草甸上使用N加成梯度实验(六个级别:0、2、4、8、16、32?gN?m ?2 ?yr ?1 )在青藏高原上,我们探索了不同生态系统碳通量对氮添加梯度的响应,并揭示了动态响应的潜在机制。结果表明,在治疗的第一年,NEE,生态系统呼吸(ER)和生态系统总产量(GEP)随N的添加率线性增加,但第二年的NEE最高则转向N饱和反应(?7.77?± N的添加量为8?gN?m ?2 ?yr时出现?0.48?μmol?m ?2 ?s ?1 ) ?1 。 NEE和GEP的饱和响应是由N引起的立式凋落物积累引起的,这限制了在高氮添加下植物生长的光利用率。 ER的饱和响应主要是由于N引起的地上植物呼吸的饱和响应以及沿N添加梯度的土壤微生物呼吸的减少,而高氮添加下土壤微生物呼吸的减少是由于N引起的土壤pH的降低引起的。 。我们还发现,ER的各个组成部分,包括地上植物的呼吸作用,土壤呼吸作用,根系呼吸作用和微生物呼吸作用,对氮添加梯度的响应不同。这些结果揭示了N影响的时间动态以及生态系统C通量从N限制到N饱和的快速转变。我们的发现提供了生态系统C通量对氮沉降增加的响应的短期初始变化的证据,在预测生态系统净C固存的长期变化时应考虑这一点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号