...
首页> 外文期刊>Biogeosciences >Coupled physical/biogeochemical modeling including Osub2/sub-dependent processes in the Eastern Boundary Upwelling Systems: application in the Benguela
【24h】

Coupled physical/biogeochemical modeling including Osub2/sub-dependent processes in the Eastern Boundary Upwelling Systems: application in the Benguela

机译:耦合的物理/生物地球化学模型,包括在东部边界上升流系统中的O 2 依赖过程:在Benguela中的应用

获取原文
           

摘要

The Eastern Boundary Upwelling Systems (EBUS) contribute to one fifth of theglobal catches in the ocean. Often associated with Oxygen Minimum Zones(OMZs), EBUS represent key regions for the oceanic nitrogen (N) cycle.Important bioavailable N loss due to denitrification and anammox processes aswell as greenhouse gas emissions (e.g, N2O) occur also in these EBUS.However, their dynamics are currently crudely represented in global models.In the climate change context, improving our capability to properly representthese areas is crucial due to anticipated changes in the winds, productivity,and oxygen content.We developed a biogeochemical model (BioEBUS) taking into account the mainprocesses linked with EBUS and associated OMZs. We implemented this model ina 3-D realistic coupled physical/biogeochemical configuration in the Namibianupwelling system (northern Benguela) using the high-resolution hydrodynamicROMS model. We present here a validation using in situ and satellite dataas well as diagnostic metrics and sensitivity analyses of key parameters andN2O parameterizations. The impact of parameter values on the OMZ offNamibia, on N loss, and on N2O concentrations and emissions is detailed.The model realistically reproduces the vertical distribution and seasonalcycle of observed oxygen, nitrate, and chlorophyll a concentrations, andthe rates of microbial processes (e.g, NH4+ and NO2−oxidation, NO3− reduction, and anammox) as well. Based on oursensitivity analyses, biogeochemical parameter values associated with organicmatter decomposition, vertical sinking, and nitrification play a key role forthe low-oxygen water content, N loss, and N2O concentrations in the OMZ.Moreover, the explicit parameterization of both steps of nitrification,ammonium oxidation to nitrate with nitrite as an explicit intermediate, isnecessary to improve the representation of microbial activity linked with theOMZ. The simulated minimum oxygen concentrations are driven by the polewardmeridional advection of oxygen-depleted waters offshore of a 300 m isobathand by the biogeochemical activity inshore of this isobath, highlighting aspatial shift of dominant processes maintaining the minimum oxygenconcentrations off Namibia.In the OMZ off Namibia, the magnitude of N2O outgassing and of N loss iscomparable. Anammox contributes to about 20% of total N loss, an estimatelower than currently assumed (up to 50%) for the global ocean.
机译:东部边界上升流系统(EBUS)占海洋总产量的五分之一。 EBUS通常与氧气最小区域(OMZs)相关联,代表海洋氮(N)循环的关键区域。由于反硝化和厌氧氨化过程以及温室气体排放(例如,N 2 )导致重要的生物利用氮损失O)也出现在这些EBUS中,但是,它们的动态性目前尚未在全球模型中粗略地表示出来。在气候变化的背景下,由于预期的风,生产力和氧气含量的变化,提高我们正确表示这些区域的能力至关重要。 我们开发了生物地球化学模型(BioEBUS),其中考虑了与EBUS和相关OMZ相关的主要过程。我们使用高分辨率HydrodynamicROMS模型在纳米比亚隆升系统(北本格拉)中的3-D现实耦合物理/生物地球化学构造中实现了该模型。在这里,我们使用原位和卫星数据以及关键参数和N 2 O参数化的诊断指标和敏感性分析进行验证。详细说明了参数值对纳米比亚离岸的OMZ,氮损失以及N 2 O浓度和排放的影响。该模型真实地再现了观测到的氧,硝酸盐和叶绿素的垂直分布和季节周期。 i> a 的浓度以及微生物过程的速率(例如NH 4 + 和NO 2 - 3 -还原和厌氧氨氧化)。根据我们的敏感性分析,与有机物分解,垂直沉降和硝化作用有关的生物地球化学参数值对于OMZ中的低氧水含量,N损失和N 2 O浓度起着关键作用。硝化这两个步骤的显式参数化,以亚硝酸盐为显性中间体,将铵氧化为硝酸盐,对于改善与OMZ相关的微生物活性的表征是必要的。模拟的最低氧浓度是由等渗线近海的生物地球化学活动引起的300 m等蝙蝠手离岸的贫氧水的极向子极对流驱动的,这突显了主要过程的星向偏移,从而使纳米比亚以外的最低氧浓度保持不变。 在纳米比亚附近的OMZ中,N 2 O除气的量和N的损失量是可比的。厌氧氨氮约占总氮损失的20%,估计低于目前对全球海洋的假设(最高50%)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号