首页> 外文期刊>Biogeosciences >Hydrothermal alteration of aragonitic biocarbonates: assessment of micro- and nanostructural dissolution–reprecipitation and constraints of diagenetic overprint from quantitative statistical grain-area analysis
【24h】

Hydrothermal alteration of aragonitic biocarbonates: assessment of micro- and nanostructural dissolution–reprecipitation and constraints of diagenetic overprint from quantitative statistical grain-area analysis

机译:芳烃类生物碳酸盐的水热蚀变:通过定量统计谷物面积分析评估微观和纳米结构的溶解-再沉淀和成岩覆盖的约束

获取原文
           

摘要

The assessment of diagenetic overprint on microstructural and geochemical data gained from fossil archives is of fundamental importance for understanding palaeoenvironments. The correct reconstruction of past environmental dynamics is only possible when pristine skeletons are unequivocally distinguished from altered skeletal elements. Our previous studies show (i)?that replacement of biogenic carbonate by inorganic calcite occurs via an interface-coupled dissolution–reprecipitation mechanism. (ii)?A comprehensive understanding of alteration of the biogenic skeleton is only given when structural changes are assessed on both, the micrometre as well as on the nanometre scale. In the present contribution we investigate experimental hydrothermal alteration of six different modern biogenic carbonate materials to (i)?assess their potential for withstanding diagenetic overprint and to (ii)?find characteristics for the preservation of their microstructure in the fossil record. Experiments were performed at 175 °C with a 100?mM?NaCl?+?10?mM?MgClsub2/sub alteration solution and lasted for up to 35?days. For each type of microstructure we (i)?examine the evolution of biogenic carbonate replacement by inorganic calcite, (ii)?highlight different stages of inorganic carbonate formation, (iii)?explore microstructural changes at different degrees of alteration, and (iv)?perform a statistical evaluation of microstructural data to highlight changes in crystallite size between the pristine and the altered skeletons. We find that alteration from biogenic aragonite to inorganic calcite proceeds along pathways where the fluid enters the material. It is fastest in hard tissues with an existing primary porosity and a biopolymer fabric within the skeleton that consists of a network of fibrils. The slowest alteration kinetics occurs when biogenic nacreous aragonite is replaced by inorganic calcite, irrespective of the mode of assembly of nacre tablets. For all investigated biogenic carbonates we distinguish the following intermediate stages of alteration: (i)?decomposition of biopolymers and the associated formation of secondary porosity, (ii)?homoepitactic overgrowth with preservation of the original phase leading to amalgamation of neighbouring mineral units (i.e.?recrystallization by grain growth eliminating grain boundaries), (iii)?deletion of the original microstructure, however, at first, under retention of the original mineralogical phase, and (iv)?replacement of both, the pristine microstructure and original phase with the newly formed abiogenic product. At the alteration front we find between newly formed calcite and reworked biogenic aragonite the formation of metastable Mg-rich carbonates with a calcite-type structure and compositions ranging from dolomitic to about 80 mol?% magnesite. This high-Mg calcite seam shifts with the alteration front when the latter is displaced within the unaltered biogenic aragonite. For all investigated biocarbonate hard tissues we observe the destruction of the microstructure first, and, in a second step, the replacement of the original with the newly formed phase.
机译:对从化石档案中获得的微观结构和地球化学数据进行成岩覆盖的评估对于理解古环境具有至关重要的意义。仅当原始骨骼与变化的骨骼元素明确区分时,才有可能正确重建过去的环境动力学。我们以前的研究表明(i)?无机方解石替代生物碳酸盐是通过界面耦合的溶解-再沉淀机制发生的。 (ii)仅在微米和纳米尺度上都评估了结构变化时,才能全面了解生物骨架的变化。在当前的贡献中,我们研究了六种不同的现代生物碳酸盐材料的水热蚀变实验,以(i)评估其承受成岩覆盖的潜力,并(ii)在化石记录中寻找保留其微观结构的特征。实验是在175°C下用100?mM?NaCl?+?10?mM?MgCl 2 改变溶液进行的,持续了35天。对于每种类型的微观结构,我们(i)检查无机方解石替代生物碳酸盐的演化,(ii)突出显示无机碳酸盐形成的不同阶段,(iii)探索不同改变程度的微观结构变化,以及(iv)对微观结构数据进行统计评估,以突出原始和改变后的骨架之间微晶尺寸的变化。我们发现,从生物文石到无机方解石的变化沿流体进入材料的途径进行。在具有现有主要孔隙率的硬组织和骨架中由原纤维网络组成的生物聚合物织物中,它最快。当用生物方解石制成的文石文石被无机方解石替代时,最慢的变化动力学发生,而与珍珠质片的组装方式无关。对于所有调查的生物碳酸盐,我们区分出以下变化的中间阶段:(i)生物聚合物的分解和相关的次级孔隙的形成,(ii)全同构过度生长并保留了原始相,从而导致相邻矿物单元的合并(即(iii)通过消除晶粒边界的晶粒长大进行再结晶),(iii)最初的微观结构的缺失,但是,首先,在保留原始矿物相的情况下,以及(iv)将原始的微观结构和原始相都替换为原始的新形成的非生物产品。在蚀变前沿,我们发现在新形成的方解石和再加工的生物文石之间,形成了方解石型结构和组成范围从白云石到约80 mol%的菱镁矿的亚稳的富含镁的碳酸盐。当高镁方解石接缝在未改变的生物文石中被置换时,其随蚀变锋而变化。对于所有调查过的生物碳酸盐硬组织,我们首先观察到微观结构的破坏,然后在第二步中观察到原始相被新形成的相替代。

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号