首页> 外文期刊>Biogeosciences Discussions >Hydrothermal alteration of aragonitic biocarbonates: assessment of micro- and nanostructural dissolution–reprecipitation and constraints of diagenetic overprint from quantitative statistical grain-area analysis
【24h】

Hydrothermal alteration of aragonitic biocarbonates: assessment of micro- and nanostructural dissolution–reprecipitation and constraints of diagenetic overprint from quantitative statistical grain-area analysis

机译:基亚硫代碳酸盐的水热改变:评估微观和纳米结构溶解 - 从定量统计晶粒区分析中的岩性叠印的再沉淀和约束

获取原文
           

摘要

The assessment of diagenetic overprint on microstructural and geochemical data gained from fossil archives is of fundamental importance for understanding palaeoenvironments. The correct reconstruction of past environmental dynamics is only possible when pristine skeletons are unequivocally distinguished from altered skeletal elements. Our previous studies show (i)?that replacement of biogenic carbonate by inorganic calcite occurs via an interface-coupled dissolution–reprecipitation mechanism. (ii)?A comprehensive understanding of alteration of the biogenic skeleton is only given when structural changes are assessed on both, the micrometre as well as on the nanometre scale.In the present contribution we investigate experimental hydrothermal alteration of six different modern biogenic carbonate materials to (i)?assess their potential for withstanding diagenetic overprint and to (ii)?find characteristics for the preservation of their microstructure in the fossil record. Experiments were performed at 175°C with a 100?mM?NaCl?+?10?mM?MgCl2 alteration solution and lasted for up to 35?days. For each type of microstructure we (i)?examine the evolution of biogenic carbonate replacement by inorganic calcite, (ii)?highlight different stages of inorganic carbonate formation, (iii)?explore microstructural changes at different degrees of alteration, and (iv)?perform a statistical evaluation of microstructural data to highlight changes in crystallite size between the pristine and the altered skeletons.We find that alteration from biogenic aragonite to inorganic calcite proceeds along pathways where the fluid enters the material. It is fastest in hard tissues with an existing primary porosity and a biopolymer fabric within the skeleton that consists of a network of fibrils. The slowest alteration kinetics occurs when biogenic nacreous aragonite is replaced by inorganic calcite, irrespective of the mode of assembly of nacre tablets. For all investigated biogenic carbonates we distinguish the following intermediate stages of alteration: (i)?decomposition of biopolymers and the associated formation of secondary porosity, (ii)?homoepitactic overgrowth with preservation of the original phase leading to amalgamation of neighbouring mineral units (i.e.?recrystallization by grain growth eliminating grain boundaries), (iii)?deletion of the original microstructure, however, at first, under retention of the original mineralogical phase, and (iv)?replacement of both, the pristine microstructure and original phase with the newly formed abiogenic product.At the alteration front we find between newly formed calcite and reworked biogenic aragonite the formation of metastable Mg-rich carbonates with a calcite-type structure and compositions ranging from dolomitic to about 80mol?% magnesite. This high-Mg calcite seam shifts with the alteration front when the latter is displaced within the unaltered biogenic aragonite. For all investigated biocarbonate hard tissues we observe the destruction of the microstructure first, and, in a second step, the replacement of the original with the newly formed phase.
机译:对从化石档案中获得的微观结构和地球化学数据进行了评估,这对于理解古环境至关重要。只有当原始骨架与改变的骨骼元素区分开来时才可以正确地重建过去的环境动态。我们以前的研究表演(I)?通过界面偶联的溶解 - 再沉淀机制,通过无机方解石更换生物碳酸盐。 (ii)(ii)综合了解生物骨骼的改变,只有在纳米尺度上进行结构变化时,只会给予结构变化。在目前的贡献中,我们研究了六种不同现代生物碳酸盐材料的实验水热改变至(i)?评估其耐受成岩套印和(ii)的潜力?找到在化石记录中保存其微观结构的特征。实验在175℃下进行,100?mm?NaCl?10?mm?MgCl 2改变溶液,持续最多35个。对于每种类型的微观结构,我们(i)?通过无机方解石检查生物碳酸酯替代的进化,(ii)?强调无机碳酸根部形成的不同阶段(iii)?探讨不同变化程度的微观结构变化,和(iv) ?对微观结构数据进行统计评估,以突出原始骨骼和改变的骨骼之间的微晶尺寸的变化。我们发现从生物制剂到无机方解石的改变沿着流体进入材料的途径进行。它在硬组织中最快,具有现有的初级孔隙率和骨架内的生物聚合物织物,其由原纤维网络组成。当生物硅酸盐制剂被无机方解石取代时,发生最慢的改变动力学,而不管芽果片的组装模式。对于所有研究的生物碳酸酯,我们区分以下中间阶段的改变:(i)?生物聚合物的分解和相关形成的次要孔隙率,(II)?均式过度生长,保存原始阶段,导致邻近矿物单位的融合(即?通过晶粒生长重结晶消除晶粒边界),(III)?缺失原始的微观结构,然而,首先是在初始矿物相的保留下,(iv)?更换,原始的微观结构和原始相位新形成的辐射产物。新形成的方解石和再加工生物制剂之间的变化前沿与亚铁型结构的富含碳酸盐型结构和组合物的形成,从多孔至约80mol?%菱镁矿之间形成。当后者在未改变的生物制剂内移位时,这种高Mg Cencite Seam的转变为换档。对于所有研究的生物碳酸盐硬组织,我们首先观察微观结构的破坏,并且在第二步中,用新形成的阶段更换原件。
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号