首页> 外文期刊>Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca: Agriculture >The Environmental Impact of Advanced Material Concepts for Luminescent Solar Concentrators
【24h】

The Environmental Impact of Advanced Material Concepts for Luminescent Solar Concentrators

机译:先进材料概念对发光太阳能聚光器的环境影响

获取原文
获取外文期刊封面目录资料

摘要

Sunlight that is incident on the front surface of a luminescent solar concentrator (LSC) is absorbed and subsequently re-emitted by luminescent materials. The resulting luminescence is transported to the edge of the LSC sheet and concentrated onto photovoltaic devices. This paper outlines the loss mechanisms that limit conversion efficiency of the LSC and highlights the role that advanced materials can play. Losses include nonunity fluorescence quantum yield (FQY), reabsorption losses, incomplete utilization of the solar spectrum, and escape cone losses. Long-term photostability is also discussed as it is essential for commercial feasibility of any solar technology. The main motivation for implementing an LSC is to replace the large area of expensive solar cells required in a standard flat-plate PV panel, with an inexpensive polymeric collector, thereby, reducing the cost of the module (in dollars per watt) and also of the solar power (in dollars per kilowatthour). A key advantage of LSC technology compared to other concentrating systems is that it can collect both direct and diffuse solar radiation. This means that tracking of the sun is not required—enhancing further potential cost reductions and making LSCs excellent candidates for building integrated photovoltaics (BIPV)—as well as making them the ideal PV technology for cloudier northern European climates. Similarly to electricity conversion, LSCs also have applications in daylighting (Hiramoto et al., 1991), thermal conversion, and hybrid thermal–photovoltaic systems that could generate electricity and extract the heat generated by the LSC plate (Xue et al., 2005).
机译:入射到发光太阳能集中器(LSC)正面的阳光被吸收并随后被发光材料重新发射。产生的发光被传输到LSC片材的边缘并集中到光伏器件上。本文概述了限制LSC转换效率的损耗机制,并强调了先进材料可以发挥的作用。损失包括非统一荧光量子产率(FQY),重吸收损失,太阳光谱的不完全利用和逃逸锥损失。还讨论了长期光稳定性,因为这对于任何太阳能技术的商业可行性都至关重要。实施LSC的主要动机是用便宜的聚合物收集器代替标准平板PV面板中所需的大面积昂贵太阳能电池,从而降低模块成本(以美元/瓦为单位),并降低成本。太阳能(以美元/千瓦时为单位)。与其他集中系统相比,LSC技术的主要优势在于它可以收集直接和漫射的太阳辐射。这意味着不需要跟踪太阳-进一步降低了潜在成本,并使LSC成为构建集成光伏(BIPV)的极佳候选者-并使它们成为多云的北欧气候的理想PV技术。与电力转换类似,低碳散装燃料电池也可用于日光照明(Hiramoto等,1991),热转换以及可产生电能并提取低碳散装燃料电池板产生的热量的混合热-光伏系统(Xue等,2005)。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号