首页> 外文期刊>BMC Plant Biology >Prediction and analysis of three gene families related to leaf rust ( Puccinia triticina ) resistance in wheat ( Triticum aestivum L.)
【24h】

Prediction and analysis of three gene families related to leaf rust ( Puccinia triticina ) resistance in wheat ( Triticum aestivum L.)

机译:小麦(Triticum aestivum L.)抗叶锈病(Puccinia triticina)三个相关基因家族的预测和分析

获取原文
获取外文期刊封面目录资料

摘要

Background The resistance to leaf rust ( Lr ) caused by Puccinia triticina in wheat ( Triticum aestivum L.) has been well studied over the past decades with over 70 Lr genes being mapped on different chromosomes and numerous QTLs (quantitative trait loci) being detected or mapped using DNA markers. Such resistance is often divided into race-specific and race-nonspecific resistance. The race-nonspecific resistance can be further divided into resistance to most or all races of the same pathogen and resistance to multiple pathogens. At the molecular level, these three types of resistance may cover across the whole spectrum of pathogen specificities that are controlled by genes encoding different protein families in wheat. The objective of this study is to predict and analyze genes in three such families: NBS-LRR (nucleotide-binding sites and leucine-rich repeats or NLR), START (Steroidogenic Acute Regulatory protein [STaR] related lipid-transfer) and ABC (ATP-Binding Cassette) transporter. The focus of the analysis is on the patterns of relationships between these protein-coding genes within the gene families and QTLs detected for leaf rust resistance. Results We predicted 526 ABC , 1117 NLR and 144 START genes in the hexaploid wheat genome through a domain analysis of wheat proteome. Of the 1809 SNPs from leaf rust resistance QTLs in seedling and adult stages of wheat, 126 SNPs were found within coding regions of these genes or their neighborhood (5 Kb upstream from transcription start site [TSS] or downstream from transcription termination site [TTS] of the genes). Forty-three of these SNPs for adult resistance and 18 SNPs for seedling resistance reside within coding or neighboring regions of the ABC genes whereas 14 SNPs for adult resistance and 29 SNPs for seedling resistance reside within coding or neighboring regions of the NLR gene. Moreover, we found 17 nonsynonymous SNPs for adult resistance and five SNPs for seedling resistance in the ABC genes, and five nonsynonymous SNPs for adult resistance and six SNPs for seedling resistance in the NLR genes. Most of these coding SNPs were predicted to alter encoded amino acids and such information may serve as a starting point towards more thorough molecular and functional characterization of the designated Lr genes. Using the primer sequences of 99 known non-SNP markers from leaf rust resistance QTLs, we found candidate genes closely linked to these markers, including Lr34 with distances to its two gene-specific markers being 1212 bases (to c ssfr1 ) and 2189 bases (to cssfr2 ). Conclusion This study represents a comprehensive analysis of ABC , NLR and START genes in the hexaploid wheat genome and their physical relationships with QTLs for leaf rust resistance at seedling and adult stages. Our analysis suggests that the ABC (and START ) genes are more likely to be co-located with QTLs for race-nonspecific, adult resistance whereas the NLR genes are more likely to be co-located with QTLs for race-specific resistance that would be often expressed at the seedling stage. Though our analysis was hampered by inaccurate or unknown physical positions of numerous QTLs due to the incomplete assembly of the complex hexaploid wheat genome that is currently available, the observed associations between (i) QTLs for race-specific resistance and NLR genes and (ii) QTLs for nonspecific resistance and ABC genes will help discover SNP variants for leaf rust resistance at seedling and adult stages. The genes containing nonsynonymous SNPs are promising candidates that can be investigated in future studies as potential new sources of leaf rust resistance in wheat breeding.
机译:背景技术在过去的几十年中,对小麦(Pticnia atictiv L.)的小麦小麦(Pticnia triticina)引起的叶锈病(Lr)的抗性进行了深入研究,将70多个Lr基因定位在不同的染色体上,并检测到许多QTL(定量性状基因座)或使用DNA标记定位这种抗性通常分为种族特异性和非种族抗性。非特定种族的抗性可进一步分为对同一病原体的大多数或所有种族的抗性和对多种病原体的抗性。在分子水平上,这三种类型的抗性可能涵盖病原体特异性的整个范围,这些病原体特异性由编码小麦中不同蛋白质家族的基因控制。这项研究的目的是预测和分析三个家族的基因:NBS-LRR(核苷酸结合位点和富含亮氨酸的重复序列或NLR),START(类固醇形成的急性调节蛋白[STaR]相关脂质转运)和ABC( ATP结合盒式磁带)转运蛋白。分析的重点是基因家族中这些蛋白质编码基因与检测到的叶锈病抗性QTL之间的关系模式。结果通过对小麦蛋白质组进行域分析,我们预测了六倍体小麦基因组中的526 ABC,1117 NLR和144 START基因。在小麦幼苗和成年期的抗叶锈病QTLs中的1809个SNP中,在这些基因的编码区或其附近(转录起始位点[TSS]上游或转录终止位点[TTS]下游5 Kb)中发现了126个SNP。基因)。成年抗性的这些SNP中的43个和幼苗抗性的18个SNP位于ABC基因的编码或邻近区域内,而成年抗性的14个SNP和幼苗抗性的29个SNP位于NLR基因的编码或邻近区域内。此外,我们在ABC基因中发现了17个成年抗性的非同义SNP和5个幼苗抗性SNP,在NLR基因中发现了5个成年抗性的非同义SNP和6个SNP。预测这些编码SNP中的大多数会改变编码的氨基酸,并且此类信息可作为朝着更全面的指定Lr基因进行分子和功能表征的起点。使用来自叶锈病抗性QTL的99个已知非SNP标记的引物序列,我们发现与这些标记紧密相关的候选基因,包括Lr34,与其两个基因特异性标记的距离分别为1212个碱基(至c ssfr1)和2189个碱基(到cssfr2)。结论本研究全面分析了六倍体小麦基因组中的ABC,NLR和START基因,以及它们与QTL在苗期和成年期抗叶锈病的物理关系。我们的分析表明,ABC(和START)基因更有可能与QTL共同定位,以产生种族非特异性的成年抗药性,而NLR基因更有可能与QTL共同定位而获得针对种族的特异性抗药性。常在苗期表达。尽管由于当前可获得的复杂六倍体小麦基因组的不完整组装,许多QTL的不正确或未知的物理位置阻碍了我们的分析,但观察到(i)种族特异性抗性QTL和NLR基因之间的关联以及(ii)非特异性抗性和ABC基因的QTL将帮助发现幼苗和成年期对叶锈病抗性的SNP变体。包含非同义SNP的基因是有前途的候选物,可以作为小麦育种中潜在的抗叶锈病新来源在未来的研究中进行研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号