...
首页> 外文期刊>BioMedical Engineering OnLine >Prediction of the mechanical response of cardiac alternans by using an electromechanical model of human ventricular myocytes
【24h】

Prediction of the mechanical response of cardiac alternans by using an electromechanical model of human ventricular myocytes

机译:通过使用人心室肌细胞的机电模型预测心脏交替素的机械反应

获取原文

摘要

Although the quantitative analysis of electromechanical alternans is important, previous studies have focused on electrical alternans, and there is a lack quantitative analysis of mechanical alternans at the subcellular level according to various basic cycle lengths (BCLs). Therefore, we used the excitation–contraction (E–C) coupling model of human ventricular cells to quantitatively analyze the mechanical alternans of ventricular cells according to various BCLs. To implement E–C coupling, we used calcium transient data, which is the output data of electrical simulation using the electrophysiological model of human ventricular myocytes, as the input data of mechanical simulation using the contractile myofilament dynamics model. Moreover, we applied various loads on ventricular cells for implementation of isotonic and isometric contraction. As the BCL was reduced from 1000 to 200?ms at 30?ms increments, mechanical alternans, as well as electrical alternans, were observed. At this time, the myocardial diastolic tension increased, and the contractile ATP consumption rate remained greater than zero even in the resting state. Furthermore, the time of peak tension, equivalent cell length, and contractile ATP consumption rate were all reduced. There are two tendencies that endocardial, mid-myocardial, and epicardial cells have the maximum amplitude of tension and the peak systolic tension begins to appear at a high rate under the isometric condition at a particular BCL. We observed mechanical alternans of ventricular myocytes as well as electrical alternans, and identified unstable conditions associated with mechanical alternans. We also determined the amount of BCL given to each ventricular cell to generate stable and high tension state in the case of isometric contraction.
机译:尽管机电替代品的定量分析很重要,但以前的研究集中在电气替代品上,并且缺乏根据各种基本周期长度(BCL)在亚细胞水平上对机械替代品进行定量分析的方法。因此,我们使用人心室细胞的激发-收缩(EC)耦合模型来根据各种BCL定量分析心室细胞的机械交替。为了实现E-C耦合,我们使用钙瞬态数据,即使用人心室肌细胞电生理模型进行电模拟的输出数据,作为使用收缩性肌丝动力学模型进行机械模拟的输入数据。此外,我们在心室细胞上施加了各种负荷,以实现等张和等距收缩。当BCL以30µms的增量从1000µms减少到200µms时,观察到机械交替和电气交替。此时,即使在静止状态下,心肌舒张张力增加,收缩性ATP消耗率仍大于零。此外,峰值张力时间,等效细胞长度和收缩性ATP消耗率均降低。在特定的BCL下,在等轴测条件下,心内膜,心肌中膜和心外膜细胞有两种最大的张力趋势,即收缩压峰值出现在较高的速率。我们观察了心室肌细胞的机械交替,以及电交替,并确定了与机械交替相关的不稳定情况。在等轴测收缩的情况下,我们还确定了给予每个心室细胞产生稳定和高张力状态的BCL量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号