...
首页> 外文期刊>BMC Bioinformatics >Rule-based spatial modeling with diffusing, geometrically constrained molecules
【24h】

Rule-based spatial modeling with diffusing, geometrically constrained molecules

机译:基于规则的空间建模,具有扩散的几何约束分子

获取原文
           

摘要

Background We suggest a new type of modeling approach for the coarse grained, particle-based spatial simulation of combinatorially complex chemical reaction systems. In our approach molecules possess a location in the reactor as well as an orientation and geometry, while the reactions are carried out according to a list of implicitly specified reaction rules. Because the reaction rules can contain patterns for molecules, a combinatorially complex or even infinitely sized reaction network can be defined. For our implementation (based on LAMMPS), we have chosen an already existing formalism (BioNetGen) for the implicit specification of the reaction network. This compatibility allows to import existing models easily, i.e., only additional geometry data files have to be provided. Results Our simulations show that the obtained dynamics can be fundamentally different from those simulations that use classical reaction-diffusion approaches like Partial Differential Equations or Gillespie-type spatial stochastic simulation. We show, for example, that the combination of combinatorial complexity and geometric effects leads to the emergence of complex self-assemblies and transportation phenomena happening faster than diffusion (using a model of molecular walkers on microtubules). When the mentioned classical simulation approaches are applied, these aspects of modeled systems cannot be observed without very special treatment. Further more, we show that the geometric information can even change the organizational structure of the reaction system. That is, a set of chemical species that can in principle form a stationary state in a Differential Equation formalism, is potentially unstable when geometry is considered, and vice versa. Conclusions We conclude that our approach provides a new general framework filling a gap in between approaches with no or rigid spatial representation like Partial Differential Equations and specialized coarse-grained spatial simulation systems like those for DNA or virus capsid self-assembly.
机译:背景我们为组合复杂的化学反应系统的基于粒子的粗粒度空间模拟提出了一种新型的建模方法。在我们的方法中,分子具有在反应器中的位置以及方向和几何形状,而反应是根据一系列隐式指定的反应规则进行的。因为反应规则可以包含分子的模式,所以可以定义组合复杂甚至大小无限的反应网络。对于我们的实现(基于LAMMPS),我们为反应网络的隐式规范选择了一个已经存在的形式主义(BioNetGen)。这种兼容性允许轻松导入现有模型,即,仅需提供其他几何数据文件。结果我们的仿真表明,所获得的动力学可能与使用经典的反应扩散方法(如偏微分方程或Gillespie型空间随机仿真)的仿真根本不同。例如,我们表明,组合的复杂性和几何效应的结合导致复杂的自组装的出现,并且运输现象的发生速度快于扩散(使用微管上的分子漫步者模型)。当使用上述经典模拟方法时,如果没有非常特殊的处理,就无法观察建模系统的这些方面。此外,我们表明几何信息甚至可以改变反应系统的组织结构。即,原则上可以在微分方程形式学中形成稳态的一组化学物质,在考虑几何形状时可能不稳定,反之亦然。结论我们得出的结论是,我们的方法提供了一个新的通用框架,填补了无或刚性空间表示(例如偏微分方程)和专门的粗粒度空间模拟系统(例如用于DNA或病毒衣壳自组装的空间模拟系统)之间的空白。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号