...
首页> 外文期刊>BMC Bioinformatics >Integrating water exclusion theory into βcontacts to predict binding free energy changes and binding hot spots
【24h】

Integrating water exclusion theory into βcontacts to predict binding free energy changes and binding hot spots

机译:将水排斥理论整合到β接触中以预测结合自由能的变化和结合热点

获取原文
           

摘要

Background Binding free energy and binding hot spots at protein-protein interfaces are two important research areas for understanding protein interactions. Computational methods have been developed previously for accurate prediction of binding free energy change upon mutation for interfacial residues. However, a large number of interrupted and unimportant atomic contacts are used in the training phase which caused accuracy loss. Results This work proposes a new method, βACVASA, to predict the change of binding free energy after alanine mutations. βACVASA integrates accessible surface area (ASA) and our newly defined β contacts together into an atomic contact vector (ACV). A β contact between two atoms is a direct contact without being interrupted by any other atom between them. A β contact’s potential contribution to protein binding is also supposed to be inversely proportional to its ASA to follow the water exclusion hypothesis of binding hot spots. Tested on a dataset of 396 alanine mutations, our method is found to be superior in classification performance to many other methods, including Robetta, FoldX, HotPOINT, an ACV method of β contacts without ASA integration, and ACVASA methods (similar to βACVASA but based on distance-cutoff contacts). Based on our data analysis and results, we can draw conclusions that: (i) our method is powerful in the prediction of binding free energy change after alanine mutation; (ii) β contacts are better than distance-cutoff contacts for modeling the well-organized protein-binding interfaces; (iii) β contacts usually are only a small fraction number of the distance-based contacts; and (iv) water exclusion is a necessary condition for a residue to become a binding hot spot. Conclusions βACVASA is designed using the advantages of both β contacts and water exclusion. It is an excellent tool to predict binding free energy changes and binding hot spots after alanine mutation.
机译:背景技术结合自由能和蛋白质-蛋白质界面上的结合热点是理解蛋白质相互作用的两个重要研究领域。先前已经开发出用于精确预测界面残基突变后结合自由能变化的计算方法。但是,在训练阶段使用了许多中断的和不重要的原子接触,这会导致精度下降。结果这项工作提出了一种新的方法,即βACV ASA ,用于预测丙氨酸突变后结合自由能的变化。 βACV ASA 将可及表面积(ASA)和我们新定义的β接触体整合为一个原子接触向量(ACV)。两个原子之间的β接触是直接接触,不会被它们之间的任何其他原子中断。遵循结合热点的水排除假设,β接触对蛋白质结合的潜在贡献也应与它的ASA成反比。通过对396个丙氨酸突变的数据集进行测试,我们的方法在分类性能方面优于许多其他方法,包括Robetta,FoldX,HotPOINT,无需ASA集成的β接触的ACV方法和ACV ASA 方法(类似于βACV ASA ,但基于距离截止接触)。根据我们的数据分析和结果,我们可以得出以下结论:(i)我们的方法在预测丙氨酸突变后的结合自由能变化方面很有效; (ii)在建立组织良好的蛋白质结合界面方面,β接触优于距离接触; (iii)β接触通常只是基于距离的接触的一小部分; (iv)排除水是残留物成为结合热点的必要条件。结论βACV ASA 是利用β接触和排斥水的优点设计的。它是预测丙氨酸突变后结合自由能变化和结合热点的出色工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号