首页> 外文期刊>BMC Structural Biology >Towards the high-resolution protein structure prediction. Fast refinement of reduced models with all-atom force field
【24h】

Towards the high-resolution protein structure prediction. Fast refinement of reduced models with all-atom force field

机译:迈向高分辨率蛋白质结构预测。利用全原子力场快速精简简化模型

获取原文
           

摘要

Background Although experimental methods for determining protein structure are providing high resolution structures, they cannot keep the pace at which amino acid sequences are resolved on the scale of entire genomes. For a considerable fraction of proteins whose structures will not be determined experimentally, computational methods can provide valuable information. The value of structural models in biological research depends critically on their quality. Development of high-accuracy computational methods that reliably generate near-experimental quality structural models is an important, unsolved problem in the protein structure modeling. Results Large sets of structural decoys have been generated using reduced conformational space protein modeling tool CABS. Subsequently, the reduced models were subject to all-atom reconstruction. Then, the resulting detailed models were energy-minimized using state-of-the-art all-atom force field, assuming fixed positions of the alpha carbons. It has been shown that a very short minimization leads to the proper ranking of the quality of the models (distance from the native structure), when the all-atom energy is used as the ranking criterion. Additionally, we performed test on medium and low accuracy decoys built via classical methods of comparative modeling. The test placed our model evaluation procedure among the state-of-the-art protein model assessment methods. Conclusion These test computations show that a large scale high resolution protein structure prediction is possible, not only for small but also for large protein domains, and that it should be based on a hierarchical approach to the modeling protocol. We employed Molecular Mechanics with fixed alpha carbons to rank-order the all-atom models built on the scaffolds of the reduced models. Our tests show that a physic-based approach, usually considered computationally too demanding for large-scale applications, can be effectively used in such studies.
机译:背景技术尽管确定蛋白质结构的实验方法提供了高分辨率的结构,但它们无法跟上氨基酸序列在整个基因组范围内分解的步伐。对于很大一部分蛋白质,其结构无法通过实验确定,计算方法可以提供有价值的信息。结构模型在生物学研究中的价值主要取决于其质量。可靠地生成接近实验质量的结构模型的高精度计算方法的开发是蛋白质结构建模中一个重要的未解决的问题。结果使用减少的构象空间蛋白建模工具CABS生成了大组结构诱饵。随后,对简化后的模型进行全原子重建。然后,使用最新的全原子力场(假设α碳的位置固定),将所得的详细模型进行能量最小化。已经显示,当使用全原子能作为排名标准时,极短的最小化会导致模型质量的正确排名(与原始结构的距离)。此外,我们对通过比较模型的经典方法构建的中低精度诱饵进行了测试。该测试将我们的模型评估程序置于最新的蛋白质模型评估方法之中。结论这些测试计算表明,不仅对于较小的蛋白质域,而且对于较大的蛋白质域,大规模的高分辨率蛋白质结构预测都是可能的,并且它应该基于建模协议的分层方法。我们使用具有固定α碳的分子力学对在简化模型的支架上构建的所有原子模型进行排序。我们的测试表明,通常在计算上对大规模应用程序要求太高的基于物理的方法可以有效地用于此类研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号