首页> 外文期刊>BMC Systems Biology >Including metabolite concentrations into flux balance analysis: thermodynamic realizability as a constraint on flux distributions in metabolic networks
【24h】

Including metabolite concentrations into flux balance analysis: thermodynamic realizability as a constraint on flux distributions in metabolic networks

机译:将代谢物浓度纳入通量平衡分析:热力学可实现性对代谢网络中通量分布的限制

获取原文
           

摘要

Background In recent years, constrained optimization – usually referred to as flux balance analysis (FBA) – has become a widely applied method for the computation of stationary fluxes in large-scale metabolic networks. The striking advantage of FBA as compared to kinetic modeling is that it basically requires only knowledge of the stoichiometry of the network. On the other hand, results of FBA are to a large degree hypothetical because the method relies on plausible but hardly provable optimality principles that are thought to govern metabolic flux distributions. Results To augment the reliability of FBA-based flux calculations we propose an additional side constraint which assures thermodynamic realizability, i.e. that the flux directions are consistent with the corresponding changes of Gibb's free energies. The latter depend on metabolite levels for which plausible ranges can be inferred from experimental data. Computationally, our method results in the solution of a mixed integer linear optimization problem with quadratic scoring function. An optimal flux distribution together with a metabolite profile is determined which assures thermodynamic realizability with minimal deviations of metabolite levels from their expected values. We applied our novel approach to two exemplary metabolic networks of different complexity, the metabolic core network of erythrocytes (30 reactions) and the metabolic network iJR904 of Escherichia coli (931 reactions). Our calculations show that increasing network complexity entails increasing sensitivity of predicted flux distributions to variations of standard Gibb's free energy changes and metabolite concentration ranges. We demonstrate the usefulness of our method for assessing critical concentrations of external metabolites preventing attainment of a metabolic steady state. Conclusion Our method incorporates the thermodynamic link between flux directions and metabolite concentrations into a practical computational algorithm. The weakness of conventional FBA to rely on intuitive assumptions about the reversibility of biochemical reactions is overcome. This enables the computation of reliable flux distributions even under extreme conditions of the network (e.g. enzyme inhibition, depletion of substrates or accumulation of end products) where metabolite concentrations may be drastically altered.
机译:背景技术近年来,约束优化(通常称为通量平衡分析(FBA))已成为大规模代谢网络中固定通量计算的一种广泛应用的方法。与动力学建模相比,FBA的显着优势在于,它基本上只需要了解网络的化学计量。另一方面,FBA的结果在很大程度上是假设的,因为该方法依赖于被认为可控制代谢通量分布的合理但难以证明的最优性原理。结果为了提高基于FBA的通量计算的可靠性,我们提出了一个附加的侧面约束条件,以确保热力学可实现性,即通量方向与Gibb自由能的相应变化一致。后者取决于代谢物的水平,可以根据实验数据推断出合理的范围。通过计算,我们的方法可以解决带有二次评分功能的混合整数线性优化问题。确定最佳的通量分布以及代谢物分布图,以确保热力学可实现性,并使代谢物水平与其预期值的偏差最小。我们将我们的新方法应用于两个具有不同复杂性的示例性代谢网络,即红细胞的代谢核心网络(30个反应)和大肠杆菌的代谢网络iJR904(931个反应)。我们的计算表明,网络复杂性的提高要求预测通量分布对标准吉布自由能变化和代谢物浓度范围变化的敏感性提高。我们证明了我们的方法用于评估防止代谢稳态达到临界浓度的外部代谢物的有用性。结论我们的方法将通量方向和代谢物浓度之间的热力学联系纳入了实用的计算算法。克服了传统FBA依赖于生化反应可逆性的直观假设的缺点。即使在网络的极端条件下(例如酶抑制,底物耗竭或终产物积累),这也可以计算出可靠的通量分布,在这种情况下代谢物浓度可能会发生巨大变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号