...
首页> 外文期刊>BMC Evolutionary Biology >RNase MRP and the RNA processing cascade in the eukaryotic ancestor
【24h】

RNase MRP and the RNA processing cascade in the eukaryotic ancestor

机译:真核祖先中的RNase MRP和RNA处理级联

获取原文
   

获取外文期刊封面封底 >>

       

摘要

BackgroundWithin eukaryotes there is a complex cascade of RNA-based macromolecules that process other RNA molecules, especially mRNA, tRNA and rRNA. An example is RNase MRP processing ribosomal RNA (rRNA) in ribosome biogenesis. One hypothesis is that this complexity was present early in eukaryotic evolution; an alternative is that an initial simpler network later gained complexity by gene duplication in lineages that led to animals, fungi and plants. Recently there has been a rapid increase in support for the complexity-early theory because the vast majority of these RNA-processing reactions are found throughout eukaryotes, and thus were likely to be present in the last common ancestor of living eukaryotes, herein called the Eukaryotic Ancestor.ResultsWe present an overview of the RNA processing cascade in the Eukaryotic Ancestor and investigate in particular, RNase MRP which was previously thought to have evolved later in eukaryotes due to its apparent limited distribution in fungi and animals and plants. Recent publications, as well as our own genomic searches, find previously unknown RNase MRP RNAs, indicating that RNase MRP has a wide distribution in eukaryotes. Combining secondary structure and promoter region analysis of RNAs for RNase MRP, along with analysis of the target substrate (rRNA), allows us to discuss this distribution in the light of eukaryotic evolution.ConclusionWe conclude that RNase MRP can now be placed in the RNA-processing cascade of the Eukaryotic Ancestor, highlighting the complexity of RNA-processing in early eukaryotes. Promoter analyses of MRP-RNA suggest that regulation of the critical processes of rRNA cleavage can vary, showing that even these key cellular processes (for which we expect high conservation) show some species-specific variability. We present our consensus MRP-RNA secondary structure as a useful model for further searches.
机译:背景在真核生物中,存在复杂的基于RNA的大分子级联,可处理其他RNA分子,尤其是mRNA,tRNA和rRNA。一个例子是核糖体生物发生中的RNase MRP处理核糖体RNA(rRNA)。一种假设是这种复杂性存在于真核生物进化的早期。另一种选择是,最初较简单的网络后来通过沿袭导致动物,真菌和植物的谱系中的基因复制而变得复杂。最近,对复杂性早期理论的支持迅速增加,因为这些RNA加工反应的绝大部分是在整个真核生物中发现的,因此可能存在于活体真核生物的最后共同祖先,在这里称为真核生物。祖先结果我们概述了真核祖先中的RNA加工级联,并特别研究了RNase MRP,由于其在真菌和动植物中的分布明显有限,以前人们认为RNase MRP在真核生物中会随后进化。最近的出版物以及我们自己的基因组搜索发现了以前未知的RNase MRP RNA,这表明RNase MRP在真核生物中分布广泛。结合RNase MRP的RNA二级结构和启动子区域分析以及目标底物(rRNA)的分析,我们可以根据真核生物进化来讨论这种分布。结论我们得出结论,现在可以将RNase MRP置于RNA-中处理真核祖先的级联,突显了早期真核生物中RNA处理的复杂性。对MRP-RNA的启动子分析表明,对rRNA切割关键过程的调控可能会有所不同,这表明即使是这些关键的细胞过程(我们期望其高度保守)也显示出某些物种特异性的变异性。我们提出我们的共识MRP RNA二级结构作为进一步搜索的有用模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号