...
首页> 外文期刊>BMC Evolutionary Biology >Visualizing differences in phylogenetic information content of alignments and distinction of three classes of long-branch effects
【24h】

Visualizing differences in phylogenetic information content of alignments and distinction of three classes of long-branch effects

机译:可视化比对系统发育信息内容的差异和三类长分支效应的区别

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Background Published molecular phylogenies are usually based on data whose quality has not been explored prior to tree inference. This leads to errors because trees obtained with conventional methods suppress conflicting evidence, and because support values may be high even if there is no distinct phylogenetic signal. Tools that allow an a priori examination of data quality are rarely applied. Results Using data from published molecular analyses on the phylogeny of crustaceans it is shown that tree topologies and popular support values do not show existing differences in data quality. To visualize variations in signal distinctness, we use network analyses based on split decomposition and split support spectra. Both methods show the same differences in data quality and the same clade-supporting patterns. Both methods are useful to discover long-branch effects. We discern three classes of long branch effects. Class I effects consist of attraction of terminal taxa caused by symplesiomorphies, which results in a false monophyly of paraphyletic groups. Addition of carefully selected taxa can fix this effect. Class II effects are caused by drastic signal erosion. Long branches affected by this phenomenon usually slip down the tree to form false clades that in reality are polyphyletic. To recover the correct phylogeny, more conservative genes must be used. Class III effects consist of attraction due to accumulated chance similarities or convergent character states. This sort of noise can be reduced by selecting less variable portions of the data set, avoiding biases, and adding slower genes. Conclusion To increase confidence in molecular phylogenies an exploratory analysis of the signal to noise ratio can be conducted with split decomposition methods. If long-branch effects are detected, it is necessary to discern between three classes of effects to find the best approach for an improvement of the raw data.
机译:背景技术公开的分子系统发育通常是基于在推断树木之前尚未探索其质量的数据。这导致错误,因为使用常规方法获得的树木抑制了相互矛盾的证据,并且即使没有明显的系统发生信号,支持值也可能很高。很少使用允许事前检查数据质量的工具。结果使用公开发表的有关甲壳类系统发育的分子分析数据,结果表明树木的拓扑结构和流行的支持值并未显示出数据质量方面的现有差异。为了可视化信号清晰度的变化,我们使用基于拆分分解和拆分支持谱的网络分析。两种方法都显示出相同的数据质量差异和相同的分支支持模式。两种方法都有助于发现长期分支效应。我们辨别出三类长支效应。 I类效应包括由同形异型引起的末端类群的吸引,这导致了共生群体的假单亲。添加精心选择的分类单元可以解决此问题。 II类效应是由剧烈的信号腐蚀引起的。受此现象影响的长枝通常会从树上滑落,形成实际上是多系的假枝条。为了恢复正确的系统发育,必须使用更保守的基因。由于累积的机会相似度或会聚的角色状态,III类效果包括吸引力。可以通过选择数据集中较少可变的部分,避免偏差并添加较慢的基因来减少这种噪声。结论为了增加对分子系统发育的置信度,可以采用分裂分解方法对信噪比进行探索性分析。如果检测到长期分支效应,则有必要区分三类效应,以找到改善原始数据的最佳方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号