...
首页> 外文期刊>Biotechnology for Biofuels >Comparative metabolic profiling of the lipid-producing green microalga Chlorella reveals that nitrogen and carbon metabolic pathways contribute to lipid metabolism
【24h】

Comparative metabolic profiling of the lipid-producing green microalga Chlorella reveals that nitrogen and carbon metabolic pathways contribute to lipid metabolism

机译:产生脂质的绿色微藻小球藻的比较代谢分析表明,氮和碳代谢途径有助于脂质代谢

获取原文

摘要

Microalgae are a promising feedstock for biofuel production. Microalgal metabolic pathways are heavily influenced by environmental factors. For instance, lipid metabolism can be induced by nitrogen-limiting conditions. However, the underlying mechanisms of lipid biosynthesis are unclear. In this study, we analyzed the global metabolic profiles of three genetically closely related Chlorella strains (C1, C2, and C3) with significant differences in lipid productivity to identify the contributions of key metabolic pathways to lipid metabolism. We found that nitrogen obtained from amino acid catabolism was assimilated via the glutamate–glutamine pathway and then stored as amino acids and intermediate molecules (particularly proline, alanine, arginine, succinate, and gamma-aminobutyrate) via the corresponding metabolic pathways, which led to carbon–nitrogen disequilibrium. Excess carbon obtained from photosynthesis or glycolysis was re-distributed into carbon-containing compounds, such as glucose-6-phosphate, fructose-6-phosphate, phosphoenolpyruvate, lactate, citrate, 3-hydroxybutyrate, and leucine, and then diverted into lipid metabolism for the production of storage lipids via the gamma-aminobutyrate pathway, glycolysis, and the tricarboxylic acid cycle. These results were substantiated in the model green alga Chlamydomonas reinhardtii by analyzing various mutants deficient in glutamate synthase/NADH-dependent, glutamate synthase/Fd-dependent, glutamine synthetase, aspartate aminotransferase, alanine aminotransferase, pyruvate kinase, and citrate synthase. Our study suggests that not only carbon but also nitrogen assimilation and distribution pathways contribute to lipid biosynthesis. Furthermore, these findings may facilitate genetic engineering efforts to enhance microalgal biofuel production.
机译:微藻是用于生物燃料生产的有前途的原料。微藻代谢途径受到环境因素的严重影响。例如,脂质代谢可以由氮限制条件诱导。但是,脂质生物合成的潜在机制尚不清楚。在这项研究中,我们分析了三种在遗传上密切相关的小球藻菌株(C1,C2和C3)的全局代谢谱,这些菌株在脂类生产力方面存在显着差异,以确定关键代谢途径对脂类代谢的贡献。我们发现,从氨基酸分解代谢获得的氮通过谷氨酸-谷氨酰胺途径被同化,然后通过相应的代谢途径作为氨基酸和中间分子(尤其是脯氨酸,丙氨酸,精氨酸,琥珀酸和γ-氨基丁酸)存储。碳氮不平衡。通过光合作用或糖酵解获得的过量碳被重新分配到含碳化合物中,例如6磷酸葡萄糖,6磷酸果糖,磷酸烯醇丙酮酸,乳酸,柠檬酸,3-羟基丁酸和亮氨酸,然后转移到脂质代谢中通过γ-氨基丁酸酯途径,糖酵解和三羧酸循环生产脂质。通过分析各种缺乏谷氨酸合酶/ NADH依赖性,谷氨酸合酶/ Fd依赖性,谷氨酰胺合成酶,天冬氨酸转氨酶,丙氨酸转氨酶,丙酮酸激酶和柠檬酸合酶的突变体,可以在模型绿藻衣藻衣藻中证实这些结果。我们的研究表明,不仅碳,而且氮的同化和分布途径也有助于脂质的生物合成。此外,这些发现可能有助于基因工程的努力,以提高微藻生物燃料的生产。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号