首页> 外文期刊>Biotechnology for Biofuels >CRISPR–Cas ribonucleoprotein mediated homology-directed repair for efficient targeted genome editing in microalgae Nannochloropsis oceanica IMET1
【24h】

CRISPR–Cas ribonucleoprotein mediated homology-directed repair for efficient targeted genome editing in microalgae Nannochloropsis oceanica IMET1

机译:CRISPR–Cas核糖核蛋白介导的同源性定向修复,可在微藻Nannochloropsis oceanica IMET1中进行有效的靶向基因组编辑

获取原文
           

摘要

Abstract BackgroundMicroalgae are considered as a sustainable feedstock for the production of biofuels and other value-added compounds. In particular, Nannochloropsis spp. stand out from other microalgal species due to their capabilities to accumulate both triacylglycerol (TAG) and polyunsaturated fatty acids (PUFAs). However, the commercialization of microalgae-derived products is primarily hindered by the high production costs compared to less sustainable alternatives. Efficient genome editing techniques leading to effective metabolic engineering could result in strains with enhanced productivities of interesting metabolites and thereby reduce the production costs. Competent CRISPR-based genome editing techniques have been reported in several microalgal species, and only very recently in Nannochloropsis spp. (2017). All the reported CRISPR–Cas-based systems in Nannochloropsis spp. rely on plasmid-borne constitutive expression of Cas9 and a specific guide, combined with repair of double-stranded breaks (DSB) by non-homologous end joining (NHEJ) for the target gene knockout.ResultsIn this study, we report for the first time an alternative approach for CRISPR–Cas-mediated genome editing in Nannochloropsis sp.; the Cas ribonucleoproteins (RNP) and an editing template were directly delivered into microalgal cells via electroporation, making Cas expression dispensable and homology-directed repair (HDR) possible with high efficiency. Apart from widely used SpCas9, Cas12a variants from three different bacterium were used for this approach. We observed that FnCas12a from Francisella novicida generated HDR-based targeted mutants with highest efficiency (up to 93% mutants among transformants) while AsCas12a from Acidaminococcus sp. resulted in the lowest efficiency. We initially show that the native homologous recombination (HR) system in N. oceanica IMET1 is not efficient for easy isolation of targeted mutants by HR. Cas9/sgRNA RNP delivery greatly enhanced HR at the target site, generating around 70% of positive mutant lines.ConclusionWe show that the delivery of Cas RNP by electroporation can be an alternative approach to the presently reported plasmid-based Cas9 method for generating mutants of N. oceanica . The co-delivery of Cas-RNPs along with a dsDNA repair template efficiently enhanced HR at the target site, resulting in a remarkable higher percentage of positive mutant lines. Therefore, this approach can be used for efficient generation of targeted mutants in Nannochloropsis sp. In addition, we here report the activity of several Cas12a homologs in N. oceanica IMET1, identifying FnCas12a as the best performer for high efficiency targeted genome editing.
机译:摘要背景微藻被认为是生产生物燃料和其他增值化合物的可持续原料。特别地,Nannochloropsis spp。与其他微藻种相比,它们具有聚三酰甘油(TAG)和多不饱和脂肪酸(PUFA)的能力,因此与众不同。然而,与可持续性较差的替代品相比,微藻类产品的商业化主要受到高生产成本的阻碍。导致有效代谢工程改造的有效基因组编辑技术可导致菌株产生有趣的代谢产物,从而降低生产成本。在几种微藻物种中已经报道了基于CRISPR的基因组编辑技术,而最近在Nannochloropsis spp中才有报道。 (2017)。 Nannochloropsis spp中所有已报道的基于CRISPR的系统。依赖于质粒携带的Cas9组成型表达和一个特定的指导,结合通过非同源末端连接(NHEJ)修复目标基因敲除的双链断裂(DSB)。结果在这项研究中,我们首次报道Nannochloropsis sp。中CRISPR-Cas介导的基因组编辑的另一种方法;通过电穿孔将Cas核糖核蛋白(RNP)和编辑模板直接递送到微藻细胞中,从而使Cas表达可有可无,并且可以进行同源性定向修复(HDR)高效。除了广泛使用的SpCas9外,该方法还使用了来自三种不同细菌的Cas12a变体。我们观察到,来自弗朗西斯菌的FnCas12a产生了基于HDR的靶向突变体,效率最高(在转化体中高达93%的突变体),而来自Acidaminococcus sp的AsCas12a。导致最低的效率。我们最初显示,N。oceanica IMET1中的天然同源重组(HR)系统无法通过HR轻松分离目标突变体。 Cas9 / sgRNA RNP的传递大大增强了靶位点的HR,产生了约70%的阳性突变株系。结论我们证明,通过电穿孔传递Cas RNP可以替代目前报道的基于质粒的Cas9产生突变株的方法。 N. oceanica。 Cas-RNPs与dsDNA修复模板的共递送有效地增强了靶位点的HR,导致阳性突变株的百分比显着提高。因此,该方法可用于有效产生Nannochloropsis sp。中的目标突变体。此外,我们在此报告了海洋N. IMET1中几个Cas12a同源物的活性,从而确定FnCas12a是高效靶向基因组编辑的最佳执行者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号