首页> 外文期刊>Biotechnology for Biofuels >Improvement of n-butanol tolerance in Escherichia coli by membrane-targeted tilapia metallothionein
【24h】

Improvement of n-butanol tolerance in Escherichia coli by membrane-targeted tilapia metallothionein

机译:膜靶向罗非鱼金属硫蛋白可提高大肠杆菌对正丁醇的耐受性

获取原文
获取外文期刊封面目录资料

摘要

Background Though n-butanol has been proposed as a potential transportation biofuel, its toxicity often causes oxidative stress in the host microorganism and is considered one of the bottlenecks preventing its efficient mass production. Results To relieve the oxidative stress in the host cell, metallothioneins (MTs), which are known as scavengers for reactive oxygen species (ROS), were engineered in E. coli hosts for both cytosolic and outer-membrane-targeted (osmoregulatory membrane protein OmpC fused) expression. Metallothioneins from human (HMT), mouse (MMT), and tilapia fish (TMT) were tested. The host strain expressing membrane-targeted TMT showed the greatest ability to reduce oxidative stresses induced by n-butanol, ethanol, furfural, hydroxymethylfurfural, and nickel. The same strain also allowed for an increased growth rate of recombinant E. coli under n-butanol stress. Further experiments indicated that the TMT-fused OmpC protein could not only function in ROS scavenging but also regulate either glycine betaine (GB) or glucose uptake via osmosis, and the dual functional fusion protein could contribute in an enhancement of the host microorganism’s growth rate. Conclusions The abilities of scavenging intracellular or extracellular ROS by these engineering E. coli were examined, and TMT show the best ability among three MTs. Additionally, the membrane-targeted fusion protein, OmpC-TMT, improved host tolerance up to 1.5% n-butanol above that of TMT which is only 1%. These results presented indicate potential novel approaches for engineering stress tolerant microorganism strains.
机译:背景技术尽管已提出正丁醇作为潜在的运输生物燃料,但其毒性通常会在宿主微生物中引起氧化应激,被认为是阻碍其有效大量生产的瓶颈之一。结果为了缓解宿主细胞中的氧化应激,在大肠杆菌宿主中工程改造了金属硫蛋白(MTs)(被称为活性氧清除剂),对细胞溶质和外膜靶向(调压膜蛋白OmpC)进行了改造。融合)表达。测试了来自人类(HMT),小鼠(MMT)和罗非鱼(TMT)的金属硫蛋白。表达膜靶向TMT的宿主菌株显示出最大的减少正丁醇,乙醇,糠醛,羟甲基糠醛和镍诱导的氧化应激的能力。在正丁醇胁迫下,同一菌株还允许重组大肠杆菌的生长速率增加。进一步的实验表明,与TMT融合的OmpC蛋白不仅可以清除ROS,还可以通过渗透作用调节甘氨酸甜菜碱(GB)或葡萄糖的摄取,并且双重功能的融合蛋白可以促进宿主微生物的生长。结论检测了这些工程大肠杆菌清除细胞内或细胞外ROS的能力,而TMT在三种MT中表现出最好的能力。此外,以膜为靶标的融合蛋白OmpC-TMT可以提高宿主耐受性,正丁醇比TMT(仅1%)高1.5%。提出的这些结果表明了工程压力耐受性微生物菌株的潜在新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号